News | Coronavirus (COVID-19) | June 03, 2021

Helping Doctors Manage COVID-19

New tool uses AI technology to assess the severity of lung infections and inform treatment

Chest X-rays used in the COVID-Net study show differing infection extent and opacity in the lungs of COVID-19 patients. Image courtesy of University of Waterloo

Chest X-rays used in the COVID-Net study show differing infection extent and opacity in the lungs of COVID-19 patients. Image courtesy of University of Waterloo

June 3, 2021 — Artificial intelligence (AI) technology developed by researchers at the University of Waterloo is capable of assessing the severity of COVID-19 cases with a promising degree of accuracy.

A study, which is part of the COVID-Net open-source initiative launched more than a year ago, involved researchers from Waterloo and spin-off start-up company DarwinAI, as well as radiologists at the Stony Brook School of Medicine and the Montefiore Medical Center in New York.

Deep-learning AI was trained to analyze the extent and opacity of infection in the lungs of COVID-19 patients based on chest X-rays. Its scores were then compared to assessments of the same x-rays by expert radiologists.

For both extent and opacity, important indicators of the severity of infections, predictions made by the AI software were in good alignment with scores provided by the human experts.

Alexander Wong, a systems design engineering professor and co-founder of DarwinAI, said the technology could give doctors an important tool to help them manage cases.

"Assessing the severity of a patient with COVID-19 is a critical step in the clinical workflow for determining the best course of action for treatment and care, be it admitting the patient to ICU, giving a patient oxygen therapy, or putting a patient on a mechanical ventilator," Wong said.

"The promising results in this study show that artificial intelligence has a strong potential to be an effective tool for supporting frontline healthcare workers in their decisions and improving clinical efficiency, which is especially important given how much stress the ongoing pandemic has placed on healthcare systems around the world."

A paper on the research, Towards computer-aided severity assessment via deep neural networks for geographic and opacity extent scoring of SARS-CoV-2 chest X-rays, appears in the journal Scientific Reports.

For more information: www.uwaterloo.ca/

Find more RSNA COVID-19 resources

PHOTO GALLERY: How COVID-19 Appears on Medical Imaging

VIDEO: How to Image COVID-19 and Radiological Presentations of the Virus — Interview with Margarita Revzin, M.D.

Find more radiology related COVID news and video

Related Content

Accuray Incorporated announced the company has received CE Mark certification for its ClearRT helical fan-beam kVCT imaging capability.
News | Radiation Therapy | June 11, 2021
June 11, 2021 — Accuray Incorporated announced the company has received CE Mark certification for its...
The new X-ray scanner can provide detailed information about the internal makeup of rocks, which could be useful for archaeologists studying fossils or miners making decisions about which ore to use in their extraction facilities. Image courtesy of Joel Greenberg, Duke University

The new X-ray scanner can provide detailed information about the internal makeup of rocks, which could be useful for archaeologists studying fossils or miners making decisions about which ore to use in their extraction facilities. Image courtesy of Joel Greenberg, Duke University

News | X-Ray | June 10, 2021
June 10, 2021 — Engineers at Duke University have demonstrated a prot
News | PET-CT | June 10, 2021
June 10, 2021 — Bringing the power of...
Richard Ernst was considered the father of nuclear magnetic resonance imaging (MRI)
News | Magnetic Resonance Imaging (MRI) | June 10, 2021
June 10, 2021 — The Washington Post has reported that Richard R.
Detection Technology, a global leader in X-ray detector solutions, has expanded its X-Scan T camera family to address a wide range of industrial inspection needs.
News | X-Ray | June 09, 2021
June 9, 2021 — Detection Technology, a global leader in...
Kathryn A. Gold, M.D., associate clinical professor at University of California San Diego School of Medicine, presented data showing an increase in people diagnosed with advanced stage breast cancer in 2020 and 2021, compared to 2019.

Kathryn A. Gold, M.D., associate clinical professor at University of California San Diego School of Medicine, presented data showing an increase in people diagnosed with advanced stage breast cancer in 2020 and 2021, compared to 2019.

News | Breast Imaging | June 08, 2021
June 8, 2021 — Reporting at the 2021 annual meeting of the American S...