For the first time, researchers led by a team from the UCLA Jonsson Comprehensive Cancer Center used prostate cancer patients’ DNA to create a model that appears to predict who will have side effects from radiation.   

January 19, 2022 — For the first time, researchers led by a team from the UCLA Jonsson Comprehensive Cancer Center used prostate cancer patients’ DNA to create a model that appears to predict who will have side effects from radiation.   

While radiation treatment is a very effective therapy for prostate cancer, around one in six men experiences more frequent or painful urination as a lingering side effect, otherwise known as genitourinary toxicity.   

These disruptive side effects can occur no matter what type of radiation a patient receives: conventionally fractionated radiotherapy (lower daily doses given over the span of multiple weeks, i.e. long-course), or stereotactic body radiotherapy (higher daily doses given over the span of 10 days, i.e. short-course). In a new study, Dr. Amar Kishan of Jonsson Comprehensive Cancer Center and, lead author and vice chair of clinical and translational research in the Department of Radiation Oncology at UCLA, teamed up with Dr. Joanne Weidhaas, senior author and Head of Translational Research in the Department of Radiation Oncology, to determine if differences in a patient’s DNA would predict whether they would have genitourinary toxicity after receiving either type of radiation. “One of the biggest goals of our research program is to try to minimize toxicity and improve quality of life after treatment,” Kishan said. “The DNA “differences” we study are perfectly suited to help identify people who will respond differently to cancer therapies, like radiation. These different responses can result in toxicity,” Weidhaas said. 

To conduct the study, published in Radiotherapy and Oncology, Kishan and colleagues analyzed DNA collected from 201 men who received either conventional fractionated radiotherapy or stereotactic body radiotherapy. Using unique differences in the patients’ DNA, the researchers then developed a model for both forms of radiation therapy to see if they could predict which patients would develop side effects.   

The study found that the models were highly predictive in differentiating between those who would experience toxic side effects after radiation therapy and those who would not. Furthermore, the models were able to predict toxicity depending on which type of radiation the patient received, long-course or short-course, indicating they could potentially help with decision making in choosing one treatment course over the other.   

In an ongoing clinical trial, Kishan is testing this model on a new set of patients to further confirm the study’s findings.  In the trial, the results from the DNA analysis are shared with each patient, and the impact of the information on shared decision making, as well as decreasing toxicity in the group as a whole, is being evaluated. 

“This research may ultimately guide a prostate cancer patient’s treatment plan,” said Kishan. "If we can know ahead of time who will tolerate radiation treatment and who may suffer these side effects, we can do a better job of assuring not only the best treatment but the one with least impact on quality of life."

For more information: https://www.uclahealth.org/

Related prostate cancer information:

Cancer Patients Overlooked in COVID-19 Vaccine Rollout

Black Patients 24% Less Likely than White Patients to Have a Prostate MRI After Receiving an Elevated PSA Score

Data Presented at ASTRO 2021 Validate Prognostic Value of Decipher Prostate Genomic Test in Newly Diagnosed, Clinically High-Risk Prostate Cancer

International Meta-analysis Quantifies Impact of Three Prostate Cancer Therapy Intensification Strategies

Related Content

News | Image Guided Radiation Therapy (IGRT)

May 19, 2022 — Brainlab announced that clinicians at UZ Brussel are the first to treat patients with the company’s new ...

Time May 19, 2022
arrow
News | Radiation Oncology

May 19, 2022 — Robert L. Bard, M.D., an ITN editorial advisory board member, received one of the highest achievements of ...

Time May 19, 2022
arrow
News | Radiation Therapy

May 18, 2022 — RaySearch announced that the treatment control system RayCommand is in clinical use at the innovative ...

Time May 18, 2022
arrow
News | Women's Health

May 18 2022 — Older breast cancer survivors with cardiometabolic risk factors who restricted food intake to eight hours ...

Time May 18, 2022
arrow
News | Radiation Oncology

May 17, 2022 — Radiation oncologists will meet with congressional leaders and staff today to ask for their support of ...

Time May 17, 2022
arrow
Videos | Proton Therapy

John C. Breneman, M.D., medical director of the Cincinnati Children's/UC Health Proton Therapy Center, and the principal ...

Time May 16, 2022
arrow
News | Focused Ultrasound Therapy

May 12, 2022 — Henry Ford Health is the first in Michigan to offer Robotic High Intensity Focused Ultrasound (HIFU) for ...

Time May 12, 2022
arrow
News | Focused Ultrasound Therapy

May 12, 2022 — UVA Health and the Charlottesville-based Focused Ultrasound Foundation today announced the launch of the ...

Time May 12, 2022
arrow
News | Treatment Planning

May 11, 2022 — Elekta has evolved radiosurgery to an unprecedented level with the launch of Elekta Esprit. This latest ...

Time May 11, 2022
arrow
News | Medical 3-D Printing

May 11, 2022 — Adaptiiv Medical Technologies is collaborating with HP Inc. and Varian, a Siemens Healthineers company ...

Time May 11, 2022
arrow
Subscribe Now