News | Treatment Planning | September 05, 2019

First Clinical Monte Carlo Photon Dose Planning Conducted in RayStation

Heidelberg University Hospital treats cervical cancer patient with lymph node involvement using fast Monte Carlo dose calculations of RayStation

First Clinical Monte Carlo Photon Dose Planning Conducted in RayStation

September 5, 2019 — Heidelberg University Hospital, Germany, has treated its first patient using Monte Carlo photon dose planning in RayStation. The decision to go clinical was made after a thorough validation of the functionality. The first patient, who has cervical cancer involving the lymph nodes, was recently treated.

In April 2018, RayStation was selected for particle therapy treatment planning in a joint decision by clinicians and researchers at Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Hospital and the German Cancer Research Center (DKFZ). Heidelberg University Hospital extended its RayStation installation for photon beam therapy in July 2018, strengthening the existing partnership with RaySearch. The order reflects the hospital’s aim of adopting RayStation as its sole treatment planning system, consolidating several legacy systems.

A vital feature in a treatment planning system is the ability to calculate the radiation dose a patient would receive during a proposed treatment. This involves modeling the components of the treatment machine, the patient’s anatomy and the radiation beam itself. RayStation 8B introduced the Monte Carlo dose calculation method for photon radiation, based on the well-known Monte Carlo algorithm, which is widely regarded as the gold standard for dose calculation.

The drawback of Monte Carlo has traditionally been prohibitively long calculation times. However, the graphics processing unit (GPU)-based dose engine in RayStation overcomes this limitation. As an example, the dose for a dual-arc volumetric modulated arc therapy (VMAT) plan can be computed in less than 30 seconds – faster than any other system on the market, according to RayStation. The Monte Carlo dose engine can also be used to calculate dose during optimization of the treatment plan, which can improve accuracy.

Heidelberg University is the oldest university in Germany; its first medical lectures were held in 1388. Today, Heidelberg University Hospital is one of the largest and most prestigious medical centers in Europe, with a reputation based on excellent patient care, research and teaching. The hospital offers inpatients and outpatients innovative and effective treatment for all complex diseases. Modern buildings with state-of-the-art equipment deliver medical care to the highest international standards. Proximity and interlinking of the specialist departments benefit the patient, with interdisciplinary cooperation ensuring optimal treatment.

Bernhard Rhein, Ph.D., and medical physicist at Heidelberg University Hospital, said, “The Monte Carlo dose engine has resulted in more accurate dose computation, especially for bone structures and the borders between tissues of differing densities. This is a significant step forward in bringing the calculated dose closer to the actual dose.”

For more information: www.raysearchlabs.com

Related Content

Members of Congress from both sides of the aisle issued a series of oversight letters to the Centers for Medicare and Medicaid Services (CMS) in recent months to urge the Agency to adjust its proposed radiation oncology advanced alternative payment model (RO Model)

Image by whitfieldink from Pixabay

News | Radiation Oncology | November 13, 2019
November 13, 2019 — Members of Congress from both sides of the aisle issued a series of oversight letters to the...
Bladder Abdomen Pelvis image with DLCExpert
News | Artificial Intelligence | November 07, 2019
November 7, 2019 — Mirada Medical, a global leader in...
Liver cancer tumor scanning using an MRI
News | Proton Therapy | November 04, 2019
November 4, 2019 – Two new studies support and inform the use of proton radiation therapy to treat patients with hepa
Attendees of ASTRO 2019 walked the halls of McCormick Place in Chicago, Ill.

Attendees of ASTRO 2019 walked the halls of McCormick Place in Chicago, Ill.

Feature | ASTRO | October 30, 2019 | By Greg Freiherr
At the American Society for Radiation Oncology’s (ASTRO) 2019 a
Advanced Radiation Therapy Upgrades AccuBoost Digital Brachytherapy Platform
News | Brachytherapy Systems, Women's Healthcare | October 23, 2019
At the 2019 American Society for Radiation Oncology (ASTRO) annual meeting, Sept. 15-18 in Chicago, Advanced Radiation...
MD Anderson and Varian Partner to Optimize Radiation Oncology Treatment
News | Treatment Planning | October 18, 2019
The University of Texas MD Anderson Cancer Center and Varian announced a new strategic collaboration to develop an...
Low four-year rates of gastrointestinal (13.6 percent) and urologic issues (7.6 percent) suggest hypofractionated proton therapy as an alternative to traditional radiotherapy to reduce toxicity.

Low four-year rates of gastrointestinal (13.6 percent) and urologic issues (7.6 percent) suggest hypofractionated proton therapy as an alternative to traditional radiotherapy to reduce toxicity.

Feature | Prostate Cancer | October 16, 2019 | By Jeff Zagoudis
Radiation therapy is an important tool in the clinician’s armamentarium for treatment of localized, early-stage prost