News | March 26, 2010

FDG PET Helps Plan Cardiac Procedures

March 26, 2010 - For a patient with heart failure, checking whether the heart could benefit from bypass surgery or a stent is critical to ensuring survival. One imaging technique, positron emission tomography (PET) with the imaging agent fluorodeoxyglucose (FDG), may provide doctors with the information they need to make more informed treatment decisions, according to research published in the April issue of The Journal of Nuclear Medicine (JNM).

"This study shows a trend toward better patient outcomes when PET is used in their diagnostic work-up and has the potential to streamline management, reduce cost and improve survival in heart failure patients," said Kevin C. Allman, M.D., senior staff specialist, PET and nuclear medicine department, Royal Prince Alfred Hospital in New South Wales, Australia, and author of an invited perspective article in JNM.

The study reported in JNM is a substudy of one of the first investigations to prospectively gather evidence in a structured randomized research protocol. The benefits of using FDG PET to assess myocardial viability—to find whether heart tissue is likely to benefit from revascularization, or restoring blood flow to the heart in order to restore impaired pumping capacity—have long been observed.

Researchers in Ottawa, Canada, analyzed data from a study that used FDG PET-directed management versus standard clinical management of patients with coronary artery disease and poor left ventricular function. The report showed that FDG PET can be a useful tool for identifying patients who would benefit from bypass surgery or other procedures to improve blood flow.

Certain factors increase the chance of success. For example, the facility used in the study had an onsite cyclotron that produced a readily available supply of FDG. The setting also had a team of clinicians with expertise in the modality, which helped to facilitate communication and interaction with the doctors who applied the information to their decision-making.

"We are confident that FDG PET viability can be used to direct therapy," said Robert Beanlands, M.D., F.R.C.P.C., F.A.C.C., chief of cardiac imaging at the University of Ottawa Heart Institute, Ontario, Canada, and lead author of the study. "In cases where it is available, we recommend this course of action because it can improve patient care and patient outcomes." Beanlands also stressed the importance of clinicians knowing how to properly use nuclear imaging data.

Cardiovascular disease remains the number one cause of death in the United States. Surgery to repair damage and restore blood flow to the heart can help some patients with congestive heart failure before it is too late. Although other imaging techniques simply characterize heart tissue as being dead (scarred) or alive (viable), molecular imaging gives doctors a more complete picture of how the heart is working, including the rate of blood flow and the metabolism of the heart. Reduced blood flow could be a sign of blocked arteries; maintained metabolism means the heart tissue in this region is still viable and would benefit from restoring flow to normal. With this information, doctors should be able to better plan treatments—and heart disease patients should have better outcomes.

Authors of, "18F-FDG PET Imaging of Myocardial Viability in an Experienced Center with Access to 18F-FDG and Integration with Clinical Management Teams: The Ottawa-FIVE Substudy of the PARR 2 Trial," include Arun Abraham, Kathryn A. Williams, Ann Guo, Robert A. deKemp, Linda Garrard, Ross A. Davies, Lloyd Duchesne, Haissam Haddad, Benjamin Chow, Jean DaSilva, and Rob S.B. Beanlands for the PARR 2 Investigators from the National Cardiac PET Centre and Division of Cardiology, Cardiovascular Research Methods Centre, University of Ottawa Heart Institute, Ottawa, Ontario, Canada; and Graham Nichol of the University of Washington-Harborview Center for Prehospital Emergency Care, Seattle, Wash.

For more information: www.snm.org

Related Content

Study Demonstrates First Human Application of Novel PET Tracer for Prostate Cancer

Transaxial 11Csarcosine hybrid PET/CT showed a (triangulated) adenocarcinoma in the transition zone of the anterior right prostate gland on PET (A), CT (B), and a separately obtained T2?weighted MR sequence (C) with resulting PET/MRI registration (D). Image courtesy of M. Piert et al., University of Michigan, Ann Arbor, Mich.

News | Radiopharmaceuticals and Tracers | August 16, 2017
In the featured translational article in the August issue of The Journal of Nuclear Medicine, researchers at the...
PET/CT Tracer Identifies Vulnerable Lesions in Non-Small Cell Lung Cancer Patients

Example of a patient with an upper left lung NSCLC: A: FDG; B: FDG PET/CT; C: Planning radiotherapy based on FDG (66Gy) with BTVm (GTV), CTV and PTV; D: PET FMISO E: FMISO PET/CT; F: boost based on the FMISO PET (76Gy) with BTVh (biological hypoxic target volume) and PTV boost. Credit: QuantIF – LITIS EA 4108 – FR CNRS 3638, Henri Becquerel Cancer Center, Rouen, France

News | PET-CT | July 14, 2017
July 14, 2017 — Fluorine-18 (18F)-fluoromisonidazole (FMISO) is a positron emission tomography (PET)...
Novel PET Tracer Detects Small Blood Clots

PET images (MIP 0-60 min) of three Cynomolgus monkeys. Strong signals are detected at the sites where inserted catheters had roughened surfaces. Almost no other background signal is visible. Only accumulation in the gallbladder becomes visible at the bottom of the image. Credit: Piramal Imaging GmbH, Berlin Germany.

News | PET Imaging | July 07, 2017
July 7, 2017 — Blood clots in veins a
Sponsored Content | Videos | Clinical Decision Support | June 29, 2017
Rami Doukky, M.D., system chair, Division of Cardiology, professor of medicine, Cook County Health and Hospitals Syst
Dual-Agent PET/MR With Time of Flight Detects More Cancer

Tc-99m MDP bone scan (left) is negative for osseous lesions. NaF/FDG PET/MRI (right and second slide) confirms absence of bone metastases, but shows liver metastases. Image courtesy of Stanford University.

News | PET-MRI | June 20, 2017
Simultaneous injections of the radiopharmaceuticals fluorine-18 fluorodeoxyglucose (18F-FDG) and 18F-sodium fluoride (...
Combined Optical and Molecular Imaging Could Guide Breast-Conserving Surgery

WLE specimen from a patient with a grade 3, ER-/HER2-, no special type (NST) carcinoma. (A) Cerenkov image; (B) Grey-scale photographic image overlaid with Cerenkov signal. An increased signal from the tumor is visible (white arrows); mean radiance is 871 ± 131 photons/s/cm2/sr, mean TBR is 3.22. Both surgeons measured the posterior margin (outlined in blue) as 2 mm (small arrow); a cavity shaving would have been performed if the image had been available intraoperatively. The medial margin (outlined in green) measured >5 mm by both surgeons. Pathology ink prevented assessing the lateral margin; a phosphorescent signal is visible (open arrows). (C) Specimen radiography image. The absence of one surgical clip to mark the anterior margin, and the odd position of the superior margin clip (white arrow) prevented reliable margin assessment. (D) Combined histopathology image from two adjacent pathology slides on which the posterior margin (bottom of image) and part of the primary tumor are visible (open arrows). The distance from the posterior margin measured 3 mm microscopically (double arrow). The medial margin is > 5 mm (not present in image). Credit: A. D. Purushotham, M.D., King’s College London, UK

News | Nuclear Imaging | June 20, 2017
June 20, 2017 — Breast-conserving surgery (BCS) is the primary treatment for early-stage...
A 77-year-old male with recurrent lymph node and pulmonary metastases detected by Ga-68 PSMA PET/CT but not by conventional imaging

A 77-year-old male with recurrent lymph node and pulmonary metastases detected by Ga-68 PSMA PET/CT but not by conventional imaging. Graphic courtesy of the Department of Nuclear Medicine, Royal North Shore Hospital, Sydney

News | Prostate Cancer | June 15, 2017
An estimated one in seven American men will be affected by prostate cancer in their lifetime. Prostate-specific...
Dual-labeled PSMA-inhibitors for the diagnosis and therapy of prostate cancer

IMAGE OF THE YEAR: Dual-labeled PSMA-inhibitors for the diagnosis and therapy of prostate cancer. Technology of dual-labeled PSMA-inhibitors for PET/CT imaging and fluorescence-guided intraoperative identification of metastases. This work might help to establish a new treatment regimen for more precise and sensitive pre-, intra- and post-therapeutic detection of prostate cancer.

Credit: Courtesy of A. Baranski, M. Schäfer, U. Bauder-Wüst, M. Roscher, J. Schmidt, E. Stenau, L. Maier-Hein, M. Eder, K. Kopka, German Cancer Research Center, Heidelberg, Germany; T. Simpfendörfer, B. Hadaschik, U. Haberkorn, Heidelberg University Hospital, Heidelberg, Germany; PET-image: Afshar-Oromieh et al., EJNMMI 2013; 40(4); STED-image: J. Matthias, German Cancer Research Center.

This study was supported by the VIP+ fund, Federal Ministry of Education & Research (BMBF), Germany.

Scientific Paper 531: “Preclinical evaluation of dual-labeled PSMA-inhibitors for the diagnosis and therapy of prostate cancer.” A. Baranski, M. Schäfer, U. Bauder-Wüst, M. Roscher, J. Schmidt, E. Stenau, L. Maier-Hein, M. Eder, K. Kopka, German Cancer Research Center (DKFZ), Heidelberg, Germany; T. Simpfendörfer, B.  Hadaschik, U. Haberkorn, University Hospital, Heidelberg, Germany. Presented at SNMMI’s 64th Annual Meeting, June 10-14, 2017, Denver, Colo.

News | Prostate Cancer | June 15, 2017
In the battle against metastatic prostate cancer, the removal of lymph node metastases using image-guided surgery may...
Overlay Init