News | Artificial Intelligence | April 02, 2019 | Jeff Zagoudis, Associate Editor

Discussion paper describes need to regulate artificial intelligence that continuously learns

FDA Proposes New Review Framework for AI-based Medical Devices

April 2, 2019 — U.S. Food and Drug Administration (FDA) Commissioner Scott Gottlieb, M.D., announced Tuesday the agency is pursuing a new framework in which to review artificial intelligence (AI)-based medical software and devices to ensure ongoing effectiveness and patient safety. The agency released a 20-page discussion paper explaining the need for a new framework, the tenets of a total product lifecycle (TPLC) approach to certification, and examples of potential real-world AI software modifications that may or may not be permitted under the proposed framework. The FDA is asking for comments and feedback from all parties to inform future decisions.

Locked Versus Adaptive AI

To date, only two AI-based technologies have received full FDA approval and are in clinical use — IDx-DR, a software that detects diabetic retinopathy, and the Viz.AI Contact application that analyzes computed tomography (CT) images for potential signs of stroke. Gottlieb noted that both of these technologies can be considered “locked” algorithms. This means that the base algorithms can only be modified by the manufacturer, and must be manually verified and validated by them as well. Other AI algorithms are considered “adaptive” or “continuously learning,” and these learn from new user data acquired through real-world use.

In the statement, Gottlieb acknowledged the vast potential of such adaptive algorithms, but also insisted that these more open technologies must still adhere to the FDA’s safety and effectiveness standards.

Total Product Lifecycle Regulatory Approach

The discussion paper describes how the current 510(k) approval pathway takes a risk-based approach, requiring new premarket submissions for some software modifications. Categories of software modifications that may require a premarket submission include:

  • A change that introduces a new risk or modifies an existing risk that could result in significant harm;
  • A change to risk controls to prevent significant harm; and
  • A change that significantly affects clinical functionality or performance specifications of the device.

For today’s AI-based technologies, the discussion paper notes these considerations must be balanced with the ability for the software to “continue to learn and evolve over time to improve patient care.”

To satisfy all of these requirements, the discussion paper explores the potential of a total product lifecycle (TPLC)-based approach to certification. In this model, the FDA would “assess the culture of quality and organizational excellence of a particular company, and have reasonable assurance of the high quality of their software development, testing and performance monitoring of their products.”

One of the key elements considered in the TPLC approach will be a software’s predetermined change control plan. This plan would provide detailed information about the types of anticipated modifications based on the algorithm’s re-training and update strategy, and the associated methodology being used to implement those changes in a controlled manner that manages risks to patients. According to Gottlieb, the goal of a revised framework would to assure that ongoing algorithm changes:

  • Follow pre-specified performance objectives and change control plans;
  • Use a validation process that ensures improvements to the performance, safety and effectiveness of the AI software; and
  • Include real-world monitoring of performance once the device is on the market to ensure safety and effectiveness are maintained.

The agency is taking public comment on the contents of the discussion paper through June 3, 2019. The full discussion paper can be read here. Comments can be submitted here.

For more information: www.fda.gov


Related Content

News | Radiology Imaging

Feb. 12, 2026 — Siemens Healthineers and Mayo Clinic are expanding their strategic collaboration to enhance patient care ...

Time February 13, 2026
arrow
News | Digital Pathology

Feb. 11, 2026 — Leica Biosystems has announced the global launch of the Leica CM1950 Cryostat with DualEcoTec Cooling ...

Time February 11, 2026
arrow
Feature | Cardiac Imaging | Kyle Hardner

Advances in coronary CT angiography (CCTA) have reached the point where image quality and AI capabilities are creating ...

Time February 06, 2026
arrow
News | Ultrasound Women's Health

Feb. 5, 2026 — BrightHeart, a global provider of AI-driven prenatal ultrasound, has announced the availability of its B ...

Time February 05, 2026
arrow
News | Lung Imaging

Feb. 3, 2026 — RevealDx, a leader in the characterization of lung nodules, recently announced FDA clearance of RevealAI ...

Time February 04, 2026
arrow
News | FDA

Jan. 29, 2026 — GE HealthCare has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for MIM ...

Time February 03, 2026
arrow
News | Radiology Imaging

Jan.26, 2026 — SimonMed Imaging has unveiled an updated brand and the launch of SimonMed Longevity, a new division ...

Time January 27, 2026
arrow
News | Point-of-Care Ultrasound (POCUS)

Jan. 22, 2026 — Qure.ai has received a grant from the Gates Foundation to develop a large open-source multi-modal ...

Time January 23, 2026
arrow
News | Magnetic Resonance Imaging (MRI)

Jan. 20, 2026 — Hyperfine, the developer of the first FDA-cleared AI-powered portable MRI system for the brain — the ...

Time January 20, 2026
arrow
News | Mammography

Jan. 16, 2026 — Vega Imaging Informatics has announced the successful curation of the world’s largest digital breast ...

Time January 19, 2026
arrow
Subscribe Now