News | Artificial Intelligence | April 02, 2019 | Jeff Zagoudis, Associate Editor

FDA Proposes New Review Framework for AI-based Medical Devices

Discussion paper describes need to regulate artificial intelligence that continuously learns

FDA Proposes New Review Framework for AI-based Medical Devices

April 2, 2019 — U.S. Food and Drug Administration (FDA) Commissioner Scott Gottlieb, M.D., announced Tuesday the agency is pursuing a new framework in which to review artificial intelligence (AI)-based medical software and devices to ensure ongoing effectiveness and patient safety. The agency released a 20-page discussion paper explaining the need for a new framework, the tenets of a total product lifecycle (TPLC) approach to certification, and examples of potential real-world AI software modifications that may or may not be permitted under the proposed framework. The FDA is asking for comments and feedback from all parties to inform future decisions.

Locked Versus Adaptive AI

To date, only two AI-based technologies have received full FDA approval and are in clinical use — IDx-DR, a software that detects diabetic retinopathy, and the Viz.AI Contact application that analyzes computed tomography (CT) images for potential signs of stroke. Gottlieb noted that both of these technologies can be considered “locked” algorithms. This means that the base algorithms can only be modified by the manufacturer, and must be manually verified and validated by them as well. Other AI algorithms are considered “adaptive” or “continuously learning,” and these learn from new user data acquired through real-world use.

In the statement, Gottlieb acknowledged the vast potential of such adaptive algorithms, but also insisted that these more open technologies must still adhere to the FDA’s safety and effectiveness standards.

Total Product Lifecycle Regulatory Approach

The discussion paper describes how the current 510(k) approval pathway takes a risk-based approach, requiring new premarket submissions for some software modifications. Categories of software modifications that may require a premarket submission include:

  • A change that introduces a new risk or modifies an existing risk that could result in significant harm;
  • A change to risk controls to prevent significant harm; and
  • A change that significantly affects clinical functionality or performance specifications of the device.

For today’s AI-based technologies, the discussion paper notes these considerations must be balanced with the ability for the software to “continue to learn and evolve over time to improve patient care.”

To satisfy all of these requirements, the discussion paper explores the potential of a total product lifecycle (TPLC)-based approach to certification. In this model, the FDA would “assess the culture of quality and organizational excellence of a particular company, and have reasonable assurance of the high quality of their software development, testing and performance monitoring of their products.”

One of the key elements considered in the TPLC approach will be a software’s predetermined change control plan. This plan would provide detailed information about the types of anticipated modifications based on the algorithm’s re-training and update strategy, and the associated methodology being used to implement those changes in a controlled manner that manages risks to patients. According to Gottlieb, the goal of a revised framework would to assure that ongoing algorithm changes:

  • Follow pre-specified performance objectives and change control plans;
  • Use a validation process that ensures improvements to the performance, safety and effectiveness of the AI software; and
  • Include real-world monitoring of performance once the device is on the market to ensure safety and effectiveness are maintained.

The agency is taking public comment on the contents of the discussion paper through June 3, 2019. The full discussion paper can be read here. Comments can be submitted here.

For more information: www.fda.gov

Related Content

Ultromics will offer its artificial intelligence driven EchoGo Pro as a stress-echo module in the EchoGo suite alongside EchoGo Core, its AI solution for automated systolic function and strain analysis. The EchoGo suite is a cloud-based service that uses artificial intelligence to fully automate the pathway to diagnosis, providing near-instant reports for clinicians without any need for physical software on site. #AI #AIhealthcare #AIecho

Ultromics will offer its artificial intelligence driven EchoGo Pro as a stress-echo module in the EchoGo suite alongside EchoGo Core, its AI solution for automated systolic function and strain analysis. The EchoGo suite is a cloud-based service that uses artificial intelligence to fully automate the pathway to diagnosis, providing near-instant reports for clinicians without any need for physical software on site.

News | Artificial Intelligence | January 06, 2021
January 6, 2021 — The U.S.
OptumInsight and Change Healthcare combine to advance a more modern, information and technology-enabled healthcare platform

Getty Images

News | Information Technology | January 06, 2021
January 6, 2020 — Optum, a diversified health services company and
#coronavirus #COVID19 #pandemic

Getty Images

News | Radiology Imaging | January 01, 2021
The Imaging Technology News (ITN) team wishes you a Happy and Healthy New Year!
Volpara Health announced two new research studies using AI-powered software to score breast density objectively and consistently to evaluate its impact in mammography and breast cancer risk assessment.
News | Breast Density | December 30, 2020
December 30, 2020 — Volpara Health announced two new research studies using...
Company delivers on last year’s roadmap milestones and continues to advance cloud-native suite of tools to lead industry to the future of enterprise imaging
News | Enterprise Imaging | December 23, 2020
December 23, 2020 — ...
 EvoHealth, a trailblazer in incorporating new technology in healthcare IT software, announced it has exceeded its first milestone of more than 100 customers with over 200 locations.
News | Information Technology | December 22, 2020
December 22, 2020 — EvoHealth, a trailblazer in incorporating n
The key trends oClinicians reviewing a COVID-19 patient's lung CT that reveals the severity of COVID-caused pneumonia. The impact of COVID on radiology was a major, over arching trend at  the 2020 Radiological Society of North America (RSNA) meeting. Getty Imagesbserved at 2020 Radiological Society of North America (RSNA) meeting all focused around COVID-19 (SARS-CoV-2) and the impact it has had on radiology. #RSNA #RSNA20 #RSNA2020

Clinicians reviewing a COVID-19 patient's lung CT that reveals the severity of COVID-caused pneumonia. The impact of COVID on radiology was a major, over arching trend at  the 2020 Radiological Society of North America (RSNA) meeting. Getty Images

Feature | RSNA | December 17, 2020 | By Melinda Taschetta-Millane and Dave Fornell
Intelerad Acquires Digisonics CVIS and OB?GYN reporting systems to Expand its Enterprise Imaging Workflow
News | Enterprise Imaging | December 16, 2020
December 16, 2020 - Intelerad Medical Systems, a provider of...
Published in Nature Communications, ReceptorNet is a breakthrough deep-learning algorithm that can determine hormone-receptor status - a crucial biomarker for clinicians when deciding on the appropriate treatment path for breast cancer treatment
News | Artificial Intelligence | December 14, 2020
December 14, 2020 — Imagine being a doctor and having a precocious resident permanently by your side, giving you bril