Technology | April 19, 2012

FDA Clears GE’s Q. Freeze for PET/CT to Better Assess Cancer Treatment Response

Q.Freeze imaging technology can eliminate a patient’s respiratory motion within PET/CT imaging, potentially saving healthcare costs

April 19, 2012 — GE Healthcare this week announced it has received U.S. Food and Drug Administration (FDA) clearance of Q.Freeze, one of the positron emission tomography/computed tomography (PET/CT) quantitative imaging technologies designed to enable treatment evaluation earlier in a patient’s cancer treatment.

Q.Freeze combines the quantitative benefits of 4-D phase-matched PET/CT imaging, MotionMatch, into a single static image. By collecting CT and PET data at each phase of the breathing cycle, then matching the data for attenuation correction purposes, Q.Freeze is designed to improve quantitative consistency compared to conventional static PET imaging techniques while facilitating the reading of the 4D PET/CT imaging. None of the acquisition data is wasted, as 100 percent of the counts collected are combined to create a single static image. The goal is an image that has the dual benefit of frozen patient respiratory motion and reduced image noise.

The spark behind the idea — which has been under development since 2006 — was that correcting for lesion movement tied to respiratory motion at the same comfort and dose level as a routine static procedure would support clinicians’ diagnostic confidence. Because patients may not breathe the same way as they might have during their baseline study, Q.Freeze could help enable easy and proper longitudinal response to therapy comparisons.

“GE Healthcare has demonstrated its excellence in addressing one of the biggest clinical challenges in PET/CT: respiratory motion” said Michael Barber, vice president and general manager, molecular imaging, GE Healthcare. “Respiratory motion impacts image clarity and quantification accuracy of lesions in organs subject to respiratory motion, such as the lung, liver and pancreas. Now with Q.Freeze, GE Healthcare is offering an innovative technology that makes patient respiratory motion correction a routine procedure for every scan.”

In a recent study by Cristina Messa, head of the nuclear medicine department, and Luca Guerra, nuclear medicine physician of the Center for Molecular Bioimaging and San Gerado Hospital (HSG-CBM) in Monza, Italy, a patient underwent PET/CT for nodule characterization. Their findings included a comparison of static acquisition, 4-D PET/CT acquisition and Q.Freeze acquisition to determine clear evidence of a metabolic lesion. The Q.Freeze acquisition was able to increase image quality, making the lesion easily identifiable. According to the doctors, this improvement leads to a potential workflow benefit, allowing the physician to review only one set of images free of a patient’s respiratory motion.

Q.Freeze is included in the GE Healthcare Q.Suite, a collection of next-generation capabilities designed to further quantitative PET by generating more consistent standardized uptake value (SUV) readings — enabling clinicians to assess treatment response accurately. During the course of cancer treatment, clinicians traditionally gauge progress by looking for physical change in the size of a tumor, typically using computed tomography (CT) or magnetic resonance (MR). However, with quantitative PET imaging, they are also able to consider a tumor’s metabolic activity. In many cases, metabolic changes in a tumor can be perceived earlier than physical ones; thus quantitative PET can give physicians an earlier view of how well a treatment is working.

For quantitative PET to be effective, consistency of SUV measurements between a patient’s baseline scan and subsequent follow-up scans is critical. Variation can occur throughout the PET workflow, in areas from patient management and biology to equipment protocols and performance. Controlling these variables to increase consistency can improve the clinician’s confidence that an SUV change has true clinical meaning.

“Doctors are seeking quantitative tools, such as Q.Freeze, to obtain reproducible measurements over a longitudinal patient study. Q.Freeze is one of the first element of a suite of tools that may enable doctors to assess confidently biological changes in a patient during a course of treatment, allowing them to quickly and accurately modify treatment regimens,” said Vivek Bhatt, general manager, PET/CT, GE Healthcare. “These tools, ultimately, could potentially contribute to personalized oncology care, increase quality of patient care and reduce wasted expenditure on ineffective treatment.”

For more information: www.gehealthcare.com

Related Content

Videos | SPECT-CT | December 12, 2018
This is a walk around of the new Spectrum Dynamics Veriton SPECT-CT nuclear imaging system introduced at the 2018 ...
Spectrum Dynamics Sues GE for Theft, Misappropriation of Trade Secrets and Unfair Competition
News | SPECT Imaging | December 06, 2018
Single-photon emission computed tomography (SPECT) cardiac imaging company Spectrum Dynamics filed a lawsuit Dec. 6,...
Subtle Medical Receives FDA Clearance, CE Mark for SubtlePET
Technology | PET Imaging | December 05, 2018
Subtle Medical announced 510(k) clearance from the U.S. Food and Drug Administration (FDA) to market SubtlePET. Subtle...
Mirada Medical Joins U.K. Consortium Exploring Healthcare AI
News | Artificial Intelligence | December 04, 2018
Mirada Medical, a leading global brand in medical imaging software, will form part of an artificial intelligence (AI)...
Siemens Healthineers Showcases syngo Virtual Cockpit for More Flexible Workforce Management
News | Teleradiology | November 25, 2018
During the 104th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA), Nov. 25-30...
GE Healthcare Recalls Millennium Nuclear Medicine Systems
News | Nuclear Imaging | November 15, 2018
GE Healthcare announced it is recalling its Millennium Nuclear Medicine Systems due to an incident in which the the top...
Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis
News | Neuro Imaging | November 14, 2018
Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
University of Missouri Research Reactor First U.S. I-131 Supplier in 30 Years

MURR is the only supplier of I 131 in the United States and the first U.S. supplier since the 1980s. Image courtesy of University of Missouri

News | Radiopharmaceuticals and Tracers | November 13, 2018
The University of Missouri Research Reactor (MURR) recently shipped its first batch of Iodine-131 (I-131), a...