News | June 09, 2014

Oncologic imaging just got better with a naturally occurring compound that protects injected radiopeptide imaging agents from enzymatic degradation in the body

June 9, 2014 — The prominent role a single enzyme plays in cancer imaging has eluded researchers for years, but not anymore. This discovery could pave new avenues in nuclear medicine. The enzyme, called neutral endopeptidase (NEP), has a way of breaking down most radiopeptide imaging agents in the body. Researchers have developed an elegant new concept that improves molecular imaging, according to study results presented during the Society of Nuclear Medicine and Molecular Imaging’s 2014 Annual Meeting.

The sneaky enzyme has evaded studies with peptide tracers until now because it dwells not in tested blood serum but along the walls of blood vessels and other tissues. In order to combat the degradation of circulating radiopeptides, researchers co-injected a NEP inhibitor called phosphoramidon, derived from bacteria, at the same time as an agent for imaging with single photon emission computed tomography and computed tomography (SPECT/CT). They then applied this method of enzyme inhibition in multiple imaging studies involving a range of radionuclide and peptide counterparts. The results of this research showed consistent success — up to 40 times the circulating radiopeptides when protected with phosphoramidon, compared to unprotected controls. This means the simple co-injection of an enzyme inhibitor promotes dramatically improved bioavailability and metabolic stability of radiopeptide imaging agents leading to higher uptake of the agent within targeted tumors and therefore better cancer imaging.

Oncologists have long sought a powerful ‘magic bullet’ that can find tumors wherever they hide in the body so that they can be imaged and then destroyed,” said Marion de Jong, Ph.D., a principal researcher for this study conducted at Erasmus Medical Center in Rotterdam, The Netherlands in cooperation with NCSR ‘Demokritos’ Athens, Greece. “Following this innovative approach, we have been able to induce, for the first time, an impressive improvement in the level of circulating and viable radiopeptides, leading to a spectacular increase in tumor uptake. Enzyme-inhibition in the body could translate into higher diagnostic sensitivity and improved therapeutic efficacy of radiopeptide drugs in cancer patients.”

Not only were circulating radiopeptides increased in small animal models of varying tumor types, but the accumulation of radiopeptides also peaked at 14 times that of controls, which had not been treated with enzyme-inhibiting phosphoramidon. These results were clearly visualized by SPECT/CT imaging.

For more information: www.snmmi.org

Related Content

News | Radiation Therapy

October 19, 2021 — RAD Technology Medical Systems (RAD) announced that it will be exhibiting at the 2021 American ...

Time October 19, 2021
arrow
News | PET Imaging

October 19, 2021 — Blue Earth Diagnostics, a Bracco company and recognized leader in the development and ...

Time October 19, 2021
arrow
News | PET Imaging

October 18, 2021 — PSMA (prostate-specific membrane antigen) PET/CT is more accurate than conventional CT in the ...

Time October 18, 2021
arrow
News | Radiation Therapy

October 7, 2021 — NANOBIOTIX, a late-stage clinical biotechnology company pioneering physics-based approaches to expand ...

Time October 07, 2021
arrow
News | Radiation Therapy

October 7, 2021 — ViewRay, Inc. announced that the company has received acceptance from the FDA on their recent ...

Time October 07, 2021
arrow
Feature | Cardiac Imaging

October 6, 2021 – A new study published in Radiology: Cardiothoracic Imaging on cardiac imaging trends over a decade ...

Time October 06, 2021
arrow
News | Women's Health

October 5, 2021 — A promising radionuclide treatment may offer new therapeutic options for breast cancer patients ...

Time October 05, 2021
arrow
News | Magnetic Resonance Imaging (MRI)

September 20, 2021 — Gadolinium-based contrast agents, the gold standard in magnetic resonance imaging (MRI) to ...

Time September 20, 2021
arrow
News | Radiation Oncology

September 17, 2021 — IBA (Ion Beam Applications S.A., EURONEXT), a world leader in particle accelerator technology, and ...

Time September 17, 2021
arrow
News | Radiopharmaceuticals and Tracers

September 17, 2021 — Blue Earth Diagnostics, a Bracco company and recognized leader in the development and ...

Time September 17, 2021
arrow
Subscribe Now