News | Image Guided Radiation Therapy (IGRT) | October 10, 2017

Elekta MR-linac Consortium Presents MRI-Guided Radiotherapy Updates at ASTRO Annual Meeting

Consortium studies include evaluation of MR/RT in brain cancer and its potential to reduce treatment volumes and protect healthy tissue in response to tumor shape changes during radiation therapy

October 10, 2017 — Elekta announced that members of the Elekta MR-linac Consortium reported data related to the advancement of the company's magnetic resonance/radiation therapy (MR/RT) system at the American Society for Radiation Oncology (ASTRO) Annual Meeting, Sept. 24-27 in San Diego.

The Elekta MR-linac is the only MR/RT system, according to the company, that integrates a high-field (1.5 Tesla) MRI scanner with an advanced linear accelerator and intelligently-designed software. The system is expected to deliver precisely targeted radiation doses while simultaneously capturing the highest-quality MR images. These features are expected to allow clinicians to visualize tumors at any time and adapt treatment.

Researchers at the Odette Cancer Centre, Sunnybrook Health Sciences Centre in Toronto, presented preliminary results of a study evaluating the potential of MR-linac in adapting to changes in tumor volume that can be observed using MRI during treatment of glioblastoma multiforme, an aggressive form of brain cancer (Abstract #3706). The study is designed to capture MR images from 20 patients at the treatment planning stage, at 10 and 20 days of radiation therapy, and at one month following completion of treatment. Imaging data showing relative and absolute changes in gross tumor volume (GTV) are then used to simulate a new planning target volume (PTV) to assess the feasibility of treatment plan adaptation.

Data for the first three patients evaluated in this study were presented by Sunnybrook's Mark Ruschin, Ph.D., MCCPM. Two of the three patients showed decreases in GTV of 14 percent and 20 percent at Day 20 and 51 percent and 42 percent one month following completion of treatment. The image set containing the 20 percent GTV shrinkage at Day 20 was used to generate an adapted plan, resulting in a new PTV that was 31 percent smaller than the original. In the adapted plan, the smaller PTV contributed to a reduction in the maximum dose to the brainstem and optic chiasm by 37 percent and 39 percent, respectively. In addition to demonstrating a dosimetric advantage of adaptive brain radiotherapy, the present work is an important first step towards developing the tools and processes needed for clinical implementation of the new MR/RT technology. Future work involves the use of functional imaging to improve the quantification of tumor and normal tissue response to radiation and ultimately leads toward adapting treatment based on an individual patient's biological response.

"Reducing treatment volumes and sparing healthy tissue is a critical factor in improving the care and outcomes for patients treated with radiation therapy," said Arjun Sahgal, M.D., deputy chief of the Department of Radiation Oncology at Sunnybrook. "These preliminary data suggest that the integrated, high-field MR imaging capabilities of MR-linac could enable online plan adaptation in response to changes in tumor volume and surrounding structures during treatment. These adaptations could enable reduced treatment volumes and protection of critical organs and structures."

The potential of MR/RT to provide greater insights into the biology of cancer was also featured at the conference. Allen Li, Ph.D., professor and chief of medical physics at Froedtert & Medical College of Wisconsin moderated and participated in a panel discussion titled "MRI-guided adaptation: From anatomy to biology" (Panel 04). The discussion focused on recent advances in using MRI to assess treatment response and guide adaptive radiation therapy practices, including: a review of data that provide insight into using advanced MRI technologies to assess or monitor radiation therapy responses in selected tumor sites; algorithms and tools required for treatment plan adaptation based on treatment responses; and opportunities and challenges related to the use of advanced MRI in clinical practice.

Additional abstracts related to the development of MR-linac presented at the conference include:

  • Quantifying complex abdominal organ motions in different time frames in radiation therapy (Abstract #3669)

This abstract reports results of a study that investigated abdominal motion induced by respiration and peristalsis during various time durations relevant to radiation therapy. The study used a variety of computed tomography (CT) and MRI techniques to acquire images of tumors and surrounding tissue in 31 patients with pancreatic or liver cancer. Images were captured while patients engaged in free breathing (FB) and breath hold (BH). Investigators conclude that the abdominal motions due to peristalsis in the time frames from seconds to minutes can be similar in magnitude to motion resulting from breathing. These motions can be irregular and persistent throughout the imaging and radiation therapy delivery procedures, and should be considered together with respiration motion during radiation therapy for abdominal tumors.

  • Acceleration of online adaptive replanning with workflow automation (Presentation #238

This abstract reports on the development of software tools to automate online adaptive re-planning (OARP) and the testing of these tools on both a conventional linear accelerator with an in-room CT scanner and an MR-linac. The research treatment-planning package has the ability to account for magnetic fields and includes fast replanning algorithms. The OARP process was broken down into five distinct modules: auto-segmentation based on daily CT or MRI scans; contour review and editing; adaptive plan generation; evaluation of the adaptive plan based on daily images; and transferring the new plan and performing quality assurance assessment prior to delivery. The automated tools and workflow were tested on 23 daily CT and MRI scans from five prostate cancer cases. Results show that OARP with the automation software tools, excluding the contour editing module, was 250 ±14 seconds, a 49 percent reduction in operation time compared with OARP conducted without the automated tools. The contour editing module, which was the most time consuming, ranged from five to ten minutes. Investigators conclude that the use of these automation tools substantially reduces the time for the online replanning process and eliminates user stresses and input errors during the online replanning process.  The research team is working to improve the efficiency of the contour editing module.

The founding members of the Elekta MR-linac Consortium are:

  • University Medical Center Utrecht, the Netherlands (UMCU);
  • The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands;
  • The University of Texas MD Anderson Cancer Center, Houston, Texas;
  • The Institute of Cancer Research, working with its clinical partner The Royal Marsden NHS Foundation Trust, London, England;
  • Froedtert & the Medical College of Wisconsin Clinical Cancer Center at Froedtert Hospital, Milwaukee, Wisconsin;
  • The Christie NHS Foundation Trust, Manchester, U.K.; and
  • The Odette Cancer Centre, Sunnybrook Health Sciences Centre in Toronto.

Elekta's MR-linac is a work in progress and not available for sale or distribution.  

For more information: www.elekta.com

Related Content

AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire)

AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire).

News | Artificial Intelligence | May 29, 2020
May 29, 2020 — GE Healthcare announced U.S.
United Imaging's uMR OMEGA is designed to provide greater access to magnetic resonance imaging (MRI) with the world’s first ultra-wide 75-cm bore 3T MRI.
News | Magnetic Resonance Imaging (MRI) | May 27, 2020
May 27, 2020 — United Imaging's...
Miami Cancer Institute’s Proton Therapy Center is the first in South Florida and the region’s top destination for this leading-edge treatment. Proton therapy is an advanced form of radiation therapy that uses pencil beam scanning (PBS) technology.

Miami Cancer Institute’s Proton Therapy Center is the first in South Florida and the region’s top destination for this leading-edge treatment. Proton therapy is an advanced form of radiation therapy that uses pencil beam scanning (PBS) technology.

Feature | Proton Therapy | May 27, 2020 | By Minesh Mehta, M.D.
Radiation therapy has advanced significantly in the last few decades as a result of a continued technological revolut
Technology becomes a state-of-the-art tool when it gets exposed to a structure that constantly tests it and allows it to evolve.

Technology becomes a state-of-the-art tool when it gets exposed to a structure that constantly tests it and allows it to evolve. Getty Images

Feature | Oncology Information Management Systems (OIMS) | May 27, 2020 | By Reshu Gupta
In the history of medicine, researchers have found cures for many diseases, but cancer has been elusive.
a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of pol

a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of polyethylene microspheres (diameter, 20 μm) dispersed in agar. The inset shows a zoomed-in view of the region boxed with a yellow dashed line. In addition, the yellow boxes are signal profiles along the xy and z axes across the microsphere centre, as well as the corresponding full width at half-maximum values. c Normalized absorption spectra of Hb, HbO2 and gold nanoparticles (AuNPs). The spectrum for the AuNPs was obtained using a USB4000 spectrometer (Ocean Optics, Dunedin, FL, USA), while the spectra for Hb and HbO2 were taken from http://omlc.org/spectra/haemoglobin/index.html. The vertical dashed lines indicate the five wavelengths used to stimulate the three absorbers: 710, 750, 780, 810 and 850 nm. Optoacoustic signals were filtered into a low-frequency band (red) and high-frequency band (green), which were used to reconstruct separate images.

News | Breast Imaging | May 26, 2020
May 26, 2020 — Breast cancer is the most common cancer in women.
A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue

A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue. Image courtesy of Xiandoing Xue, UC Davis

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers at the University of California, Davis offers a...
Researchers from Tokyo Metropolitan University have surveyed the amount of gadolinium found in river water in Tokyo. Gadolinium is contained in contrast agents given to patients undergoing medical magnetic resonance imaging (MRI) scans, and it has been shown in labs to become toxic when exposed to ultraviolet rays. The researchers found significantly elevated levels, particularly near water treatment plants, highlighting the need for new public policy and removal technologies as MRI become even more commonp

Samples were taken along rivers around Tokyo. Measurements of rare earth element quantities indicate a clearly elevated amount of gadolinium compared to that in natural shale. Graphics courtesy of Tokyo Metropolitan University

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers from Tokyo Metropolitan...
Despite facing challenges such as limited access to personal protective equipment (PPE) following the COVID-19 outbreak, radiation oncology clinics quickly implemented safety and process enhancements that allowed them to continue caring for cancer patients, according to a new national survey from the American Society for Radiation Oncology (ASTRO).

Getty Images

News | Coronavirus (COVID-19) | May 21, 2020
May 21, 2020 — Despite facing challenges such as limited access to...
Remote reading of imaging studies on home picture archiving and communication systems (PACS) workstations can contribute to social distancing, protect vulnerable radiologists and others in the hospital, and ensure seamless interpretation capabilities in emergency scenarios, according to an open-access article published ahead-of-print by the American Journal of Roentgenology (AJR).

Srini Tridandapani, M.D., Ph.D.

News | PACS | May 21, 2020
May 21, 2020 — 
The global radiation therapy market is expected to reach $10.11 billion in 2024, witnessing growth at a CAGR of 3.38%, over the period 2020-2024.
News | Proton Therapy | May 20, 2020
May 20, 2020 — ResearchAndMarkets.com has released its latest report, the ...