News | Breast Imaging | April 02, 2018

Diagnosing Breast Cancer Using Red Light

New design improves sensitivity of optical mammography instruments 1,000-fold

Diagnosing Breast Cancer Using Red Light

Schematic diagram for OM instrument: Seven pulsed lasers sequentially illuminate the compressed breast; transmitted light is detected by the 8-channel SiPM probe and the TDC acquires the signal. Credit: Edoardo Ferocino

April 2, 2018 — Optical mammography (OM), which uses harmless red or infrared light, has been developed for use in conjunction with X-rays for diagnosis or monitoring in cases demanding repeated imaging where high amounts of ionizing radiation should be avoided. At the OSA Biophotonics Congress: Biomedical Optics meeting, held April 3-6 in Hollywood, Fla., researchers from Milan, Italy, will report an advance in instrument development that increases the sensitivity of OM by as much as 1,000-fold.

In 2017, an estimated 252,710 new cases of invasive breast cancer were diagnosed in women and 2,470 cases were diagnosed in men1. Many of these diagnoses are made using X-ray mammography. Although standard and widely used, X-ray imaging for breast cancer suffers from both low sensitivity (50-75 percent) and the use of ionizing radiation that cannot be considered completely safe.

The newly-developed instrument replaces two photomultiplier tubes (PMTs) of existing instruments with an eight-channel probe involving silicon photomultipliers (SiPMs) and a multichannel time-to-digital converter. These changes eliminate a pre-scan step that was required to avoid damage to the PMTs. In addition to increased sensitivity, the new instrument is both more robust and cheaper.

While X-ray mammography is widely used and is still the recommended method for routine screenings, its use is limited by the patient’s age, weight or body mass index, the breast tissue itself, whether or not hormone replacement therapy is being used and other issues. In addition, its accuracy — particularly when used in younger women — has been called into question. Other breast imaging techniques, such as magnetic resonance imaging (MRI) and ultrasound, are sometimes suggested, but neither is an effective replacement for X-ray mammography.

Optical imaging methods, on the other hand, have attracted increasing interest for breast cancer diagnosis since both visible and infrared light are highly sensitive to tissue composition. Tumors are characterized by a high volume of blood due to the increased vascularization that occurs as tumors grow. OM can be used to measure blood volume, oxygenation, lipid, water and collagen content for a suspicious area identified through standard X-ray imaging. Collagen measurements are particularly important since this species is known to be involved in the onset and progression of breast cancer.

One major disadvantage to OM imaging is the poor spatial resolution that has been achieved to date. Breast cancer tumors larger than 1 centimeter are very dangerous and more likely to lead to death, so a successful screening technique must be able to resolve smaller lesions. This remains a problem with OM imaging as a stand-alone technique, but combining OM with other imaging methods shows some promise.

A possible advantage to OM, however, is that only gentle pressure need be applied to the breast tissue, in stark contrast to the standard technique for X-ray imaging. In fact, breast compression tends to reduce blood volume in the tissue, which would interfere with the OM image, so some three-dimensional OM detectors being developed use no compression at all, but rather surround the breast tissue with rings of light sources and detectors.

While poor spatial resolution of OM methods remains a challenge, the method does show promise for use in pre-surgical chemotherapy. As Edoardo Ferocino, Politecnico di Milano, Italy, co-author of the work explained, “This technique is able to provide information on the outcome of chemotherapy just weeks after beginning treatment, or possibly even sooner.” Ferocino’s group is planning clinical studies to explore the use of OM to monitor and predict the outcome of chemotherapy.

The investigators in Milan are working with a larger consortium on a project known as SOLUS, “Smart Optical and Ultrasound Diagnostics of Breast Cancer.” This project is funded by the European Union through the Horizon 2020 Research and Innovation Program and aims to combine optical imaging methods with ultrasound to improve specificity in the diagnosis of breast cancer.

For more information: www.osa.org

[1] American Cancer Society. Breast Cancer Facts & Figures 2017-2018. Retrieved from Cancer.org.

Related Content

Video Plus Brochure Helps Patients Make Lung Cancer Scan Decision

Image courtesy of the American Thoracic Society

News | Lung Cancer | April 19, 2019
A short video describing the potential benefits and risks of low-dose computed tomography (CT) screening for lung...
In a demonstration on the exhibit floor of the SBI symposium, Koios software identified suspicious lesions in ultrasound images

In a demonstration on the exhibit floor of the SBI symposium, Koios software identified suspicious lesions in ultrasound images. Photo by Greg Freiherr

Feature | Artificial Intelligence | April 19, 2019 | By Greg Freiherr
Commercial efforts to develop...
Artificial Intelligence Performs As Well As Experienced Radiologists in Detecting Prostate Cancer
News | Artificial Intelligence | April 18, 2019
University of California Los Angeles (UCLA) researchers have developed a new artificial intelligence (AI) system to...
Videos | Breast Imaging | April 18, 2019
In a keynote lecture at the Society of Breast Imaging (SBI)/American College of Radiology (ACR) 2019 Symposium, ...
Fatty tissue and breast density may be considered in the context of many factors that affect the occurrence and detection of breast cancer

Fatty tissue and breast density may be considered in the context of many factors that affect the occurrence and detection of breast cancer. Permission to publish provided by DenseBreast-info.org

Feature | Breast Imaging | April 18, 2019 | By Greg Freiherr
When planning a screening program to detect the early signs of breast cancer, age is a major consideration.
iCAD Appoints Stacey Stevens as President
News | Radiology Business | April 16, 2019
iCAD Inc. recently announced that Stacey Stevens has been named president. As president, Stevens will have expanded...
compressed breast during mammography.
360 Photos | 360 View Photos | April 16, 2019
A 360 view of a simulated breast compression for a...
Check-Cap Initiates U.S. Pilot Study of C-Scan for Colorectal Cancer Screening
News | Colonoscopy Systems | April 15, 2019
Check-Cap Ltd. has initiated its U.S. pilot study of the C-Scan system for prevention of colorectal cancer through...