News | June 18, 2008

CT, MR, PET Create Image of the Year

June 19, 2008 - One of the two images selected as the 2008 SNM Image of the Year at SNM 2008 reveals a relapse of neuroendocrine cancer—a malignancy of the interface between the hormonal and nervous systems—including a nodal involvement.

Stefano Fanti, M.D., professor of nuclear medicine at the Policlinico S. Orsola–Università di Bologna in Italy presented the image from a case of a neuroendocrine tumor located in the left middle ear that was referred for restaging.

"The patient was a young male treated by surgery a few months before," said Dr. Fanti. "Conventional imaging, including CT and MR, showed a suspect local relapse. PET/CT confirmed the local relapse, but also demonstrated a nodal involvement, leading to an alteration of his treatment. The finding was subsequently confirmed by CT, and the patient was scheduled for systemic treatment."

The image demonstrates the breadth of molecular imaging and shows how imaging techniques are increasingly being used in combination to provide precise snapshots of both the molecular function and the anatomy of disease in various parts of the human body.

"Using positron emission tomography and computed tomography (PET/CT), one group of physicians was able to see that a suspicious lesion in the left ear was not confined just to that area, but also involved a lymph node. This helped them plan the subsequent treatment," added Dr. Wagner.

For more information: www.snm.org

Related Content

Tau (blue) and amyloid (orange) distribution patterns for super-agers, normal-agers and MCI patients, when compared to a group of younger, healthy, cognitively normal, amyloid-negative individuals. Brain projections are depicted at an uncorrected significance level of p < .0001. Color bars represent the respective t-statistic. Image courtesy of Merle C. Hoenig, Institute for Neuroscience and Medicine II - Molecular Organization of the Brain, Research Center Juelich, Juelich, Germany, and Department of Nucle

Tau (blue) and amyloid (orange) distribution patterns for super-agers, normal-agers and MCI patients, when compared to a group of younger, healthy, cognitively normal, amyloid-negative individuals. Brain projections are depicted at an uncorrected significance level of p < .0001. Color bars represent the respective t-statistic. Image courtesy of Merle C. Hoenig, Institute for Neuroscience and Medicine II - Molecular Organization of the Brain, Research Center Juelich, Juelich, Germany, and Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany.

News | PET Imaging | July 16, 2020
July 16, 2020 — Super-agers, or individuals whose cognitive skills are above the norm even at an advanced age, have b
PSMA PET/CT accurately detects recurrent prostate cancer in 67-year-old man. 18F-DCFPyL-PSMA PET/CT shows extensive, intensely PSMA-avid local recurrence in prostate (bottom row; solid arrow) in keeping with the known tumor recurrence in the prostate. Right: PET shows extensive, intensely PSMA-avid local recurrence in prostate (top row; solid arrow) and a solitary bone metastasis in left rib 2 (bottom row; dotted arrow). Image courtesy of Ur Metser, et al.

PSMA PET/CT accurately detects recurrent prostate cancer in 67-year-old man. 18F-DCFPyL-PSMA PET/CT shows extensive, intensely PSMA-avid local recurrence in prostate (bottom row; solid arrow) in keeping with the known tumor recurrence in the prostate. Right: PET shows extensive, intensely PSMA-avid local recurrence in prostate (top row; solid arrow) and a solitary bone metastasis in left rib 2 (bottom row; dotted arrow). Image courtesy of Ur Metser, et al.

News | PET-CT | July 16, 2020
July 16, 2020 — New research confirms the high impact of...
Total-body dynamic 18F-FDG PET imaging with the uEXPLORER scanner allows us to monitor the spatiotemporal distribution of glucose concentration in metastatic tumors in the entire body (a). As compared to a typical clinical standardized uptake value image (b), the parametric image of FDG influx rate (Ki) can achieve higher lesion-to-background (e.g., the liver) contrast. In addition to glucose metabolism imaging by Ki, total-body dynamic PET also enables multiparametric characterization of tumors and organs

Total-body dynamic 18F-FDG PET imaging with the uEXPLORER scanner allows us to monitor the spatiotemporal distribution of glucose concentration in metastatic tumors in the entire body (a). As compared to a typical clinical standardized uptake value image (b), the parametric image of FDG influx rate (Ki) can achieve higher lesion-to-background (e.g., the liver) contrast. In addition to glucose metabolism imaging by Ki, total-body dynamic PET also enables multiparametric characterization of tumors and organs using additional physiologically important parameters, for example, glucose transport rate K1 (d), across the entire body. Image courtesy of G.B. Wang, M. Parikh, L. Nardo, et al., University of California Davis, Calif.

News | PET Imaging | July 16, 2020
July 16, 2020 — Results from the first...
Representative maximum-intensity projection PET images of a healthy human volunteer injected with 64Cu-NOTA-EB-RGD at 1, 8, and 24 hours after injection. Axial MRI and PET slices of glioblastoma patient injected with 64Cu-NOTA-EB-RGD at different time points after injection. Image courtesy of Jingjing Zhang et al., Peking Union Medical College Hospital, Beijing, China/ Xiaoyuan Chen et al., Laboratory of Molecular Imaging and Nanomedicine, NIBIB/NIH, Bethesda, USA

Representative maximum-intensity projection PET images of a healthy human volunteer injected with 64Cu-NOTA-EB-RGD at 1, 8, and 24 hours after injection. Axial MRI and PET slices of glioblastoma patient injected with 64Cu-NOTA-EB-RGD at different time points after injection. Image courtesy of Jingjing Zhang et al., Peking Union Medical College Hospital, Beijing, China/ Xiaoyuan Chen et al., Laboratory of Molecular Imaging and Nanomedicine, NIBIB/NIH, Bethesda, USA

News | PET Imaging | July 15, 2020
July 15, 2020 — A first-in-human study presented at the Society of...
PET/CT imaging showing uptake and retention of 86Y-NM600 (imaging agent) in immunocompetent mice bearing prostate tumors. PET imaging data was employed to estimate tumor dosimetry and prescribe an immunomodulatory 90Y-NM600 (therapy agent) injected activity. Image courtesy of R Hernandez et al., University of Wisconsin-Madison, WI.

PET/CT imaging showing uptake and retention of 86Y-NM600 (imaging agent) in immunocompetent mice bearing prostate tumors. PET imaging data was employed to estimate tumor dosimetry and prescribe an immunomodulatory 90Y-NM600 (therapy agent) injected activity. Image courtesy of R Hernandez et al., University of Wisconsin-Madison, WI.

News | PET-CT | July 15, 2020
July 15, 2020 — ...
The FDA has approved Lilly’s TAUVID (flortaucipir F 18 injection), a radioactive diagnostic agent, for PET imaging of the brain to estimate the density and distribution of aggregated tau neurofibrillary tangles (NFTs) in adult patients with cognitive impairment who are being evaluated for Alzheimer’s disease

Getty Images

News | Contrast Media | June 01, 2020
June 1, 2020 — TAUVID, a radioactive diagnostic agent, has been approved by the FDA for...
MERCK and RefleXion Medical announced a collaboration to evaluate KETRUDA (immunotherapy) with biology-guided radiotherapy - BgRT -  a new radiation machine developed to treat all stages of cancer.

MERCK and RefleXion Medical announced a collaboration to evaluate KETRUDA (immunotherapy) with biology-guided radiotherapy - BgRT -  a new radiation machine developed to treat all stages of cancer.

 

News | Radiation Therapy | June 01, 2020
June 1, 2020 — RefleXion Medical, a therape
Colored areas of the brain represent regions where the loss of brain synapses in people with early-stage Alzheimer’s was greater than people with normal cognitive function.

Colored areas of the brain represent regions where the loss of brain synapses in people with early-stage Alzheimer’s was greater than people with normal cognitive function. Image courtesy of YaleNews.

News | PET Imaging | May 14, 2020
May 14, 2020 — New imaging technology allows scientists to see the widespread loss of brain synapses in early stages