News | Analytics Software | October 25, 2016

New research could speed identification of recurrent tumors, eliminate costly and risky brain biopsies

Case Western Reserve University study, machine learning, MRI, brain cancer diagnoses, radiomics

October 25, 2016 — Computer programs have defeated humans in Jeopardy!, chess and Go. Now a program developed at Case Western Reserve University has outperformed physicians on a more serious matter.

The program was nearly twice as accurate as two neuroradiologists in determining whether abnormal tissue seen on magnetic resonance images (MRI) were dead brain cells caused by radiation, called radiation necrosis, or if brain cancer had returned.

The direct comparison is part of a feasibility study published in the American Journal of Neuroradiology.

“One of the biggest challenges with the evaluation of brain tumor treatment is distinguishing between the confounding effects of radiation and cancer recurrence,” said Pallavi Tiwari, assistant professor of biomedical engineering at Case Western Reserve and leader of the study. “On an MRI, they look very similar.”

But treatments for radiation necrosis and cancer recurrence are far different. Quick identification can help speed prognosis, therapy and improve patient outcomes, the researchers say.

With further confirmation of its accuracy, radiologists using their expertise and the program may eliminate unnecessary and costly biopsies, Tiwari said. Brain biopsies are currently the only definitive test but are highly invasive and risky, causing considerable morbidity and mortality.

To develop the program, the researchers employed machine learning algorithms in conjunction with radiomics, the term used for features extracted from images using computer algorithms. The engineers, scientists and physicians trained the computer to identify radiomic features that discriminate between brain cancer and radiation necrosis, using routine follow-up MRI scans from 43 patients. The images were all from University Hospitals Case Medical Center.

The team then developed algorithms to find the most discriminating radiomic features — in this case, textures that can’t be seen by simply eyeballing the images.

“What the algorithms see that the radiologists don’t are the subtle differences in quantitative measurements of tumor heterogeneity and breakdown in microarchitecture on MRI, which are higher for tumor recurrence,” said Tiwari, who was appointed to the Department of Biomedical Engineering by the Case Western Reserve School of Medicine.

More specifically, while the physicians use the intensity of pixels on MRI scans as a guide, the computer looks at the edges of each pixel, explained Anant Madabhushi, F. Alex Nason professor II of biomedical engineering at Case Western Reserve, and study co-author.

“If the edges all point to the same direction, the architecture is preserved,” said Madabhushi, who also directs the Center of Computational Imaging and Personalized Diagnostics at CWRU. “If they point in different directions, the architecture is disrupted — the entropy, or disorder, and heterogeneity are higher. “

In the direct comparison, two physicians and the computer program analyzed MRI scans from 15 patients from University of Texas Southwest Medical Center. One neuroradiologist diagnosed seven patients correctly, and the second physician correctly diagnosed eight patients. The computer program was correct on 12 of the 15.

Tiwari and Madabhushi do not expect the computer program would be used alone, but as a decision support to assist neuroradiologists in improving their confidence in identifying a suspicious lesion as radiation necrosis or cancer recurrence.

Next, the researchers are seeking to validate the algorithms’ accuracy using a much larger collection of images from across different sites.

For more information: www.ajnr.org


Related Content

News | Teleradiology

May 21, 2025 — Konica Minolta Healthcare Americas, Inc and NewVue have announced the introduction of Exa Teleradiology ...

Time May 21, 2025
arrow
News | Artificial Intelligence

May 15, 2025 – Royal Philips, a global leader in health technology, has released its 10th annual Future Health Index ...

Time May 19, 2025
arrow
News | Artificial Intelligence

May 14, 2025 – Bialogics Analytics Inc., a leader in radiology informatics, has introduced its new AI solution AI ...

Time May 16, 2025
arrow
News | Radiology Business

The issue of sustainability in healthcare has gained increasing focus over the past several years. During a 2022 plenary ...

Time May 06, 2025
arrow
News | Artificial Intelligence

May 6, 2025 — NewVue.ai, a leader in cloud-native radiology workflow orchestration, and MD.ai, a pioneer in AI-enhanced ...

Time May 06, 2025
arrow
News | SIIM

April 14, 2025 —The Society for Imaging Informatics in Medicine (SIIM) Annual Meeting is set to take place May 23 to 25 ...

Time April 14, 2025
arrow
News | Pediatric Imaging

April 10, 2025 — Cincinnati Children’s and GE HealthCare will form a strategic research program focused on driving ...

Time April 10, 2025
arrow
News | Artificial Intelligence

Feb. 4, 2025 — Riverain Technologies recently announced it expanded across eight countries in 2024 and added nearly 50 ...

Time February 04, 2025
arrow
News | Radiology Imaging

Jan. 15, 2025 — University of California, San Francisco (UCSF) Department of Radiology & Biomedical Imaging and GE ...

Time January 27, 2025
arrow
News | Contrast Media

Jan. 10, 2025 – Bayer has announced positive topline results of the Phase III QUANTI studies evaluating the efficacy and ...

Time January 14, 2025
arrow
Subscribe Now