News | Analytics Software | October 25, 2016

Computer Program Beats Physicians at Brain Cancer Diagnoses

New research could speed identification of recurrent tumors, eliminate costly and risky brain biopsies

Case Western Reserve University study, machine learning, MRI, brain cancer diagnoses, radiomics

MRI scans of patients with radiation necrosis (above) and cancer recurrence (below) are shown in the left column. Close-ups in the center column show the regions are indistinguishable on routine scans. Radiomic descriptors unearth subtle differences showing radiation necrosis, in the upper right panel, has less heterogeneity, shown in blue, compared to cancer recurrence, in the lower right, which has a much higher degree of heterogeneity, shown in red. Credit: Pallavi Tiwari

October 25, 2016 — Computer programs have defeated humans in Jeopardy!, chess and Go. Now a program developed at Case Western Reserve University has outperformed physicians on a more serious matter.

The program was nearly twice as accurate as two neuroradiologists in determining whether abnormal tissue seen on magnetic resonance images (MRI) were dead brain cells caused by radiation, called radiation necrosis, or if brain cancer had returned.

The direct comparison is part of a feasibility study published in the American Journal of Neuroradiology.

“One of the biggest challenges with the evaluation of brain tumor treatment is distinguishing between the confounding effects of radiation and cancer recurrence,” said Pallavi Tiwari, assistant professor of biomedical engineering at Case Western Reserve and leader of the study. “On an MRI, they look very similar.”

But treatments for radiation necrosis and cancer recurrence are far different. Quick identification can help speed prognosis, therapy and improve patient outcomes, the researchers say.

With further confirmation of its accuracy, radiologists using their expertise and the program may eliminate unnecessary and costly biopsies, Tiwari said. Brain biopsies are currently the only definitive test but are highly invasive and risky, causing considerable morbidity and mortality.

To develop the program, the researchers employed machine learning algorithms in conjunction with radiomics, the term used for features extracted from images using computer algorithms. The engineers, scientists and physicians trained the computer to identify radiomic features that discriminate between brain cancer and radiation necrosis, using routine follow-up MRI scans from 43 patients. The images were all from University Hospitals Case Medical Center.

The team then developed algorithms to find the most discriminating radiomic features — in this case, textures that can’t be seen by simply eyeballing the images.

“What the algorithms see that the radiologists don’t are the subtle differences in quantitative measurements of tumor heterogeneity and breakdown in microarchitecture on MRI, which are higher for tumor recurrence,” said Tiwari, who was appointed to the Department of Biomedical Engineering by the Case Western Reserve School of Medicine.

More specifically, while the physicians use the intensity of pixels on MRI scans as a guide, the computer looks at the edges of each pixel, explained Anant Madabhushi, F. Alex Nason professor II of biomedical engineering at Case Western Reserve, and study co-author.

“If the edges all point to the same direction, the architecture is preserved,” said Madabhushi, who also directs the Center of Computational Imaging and Personalized Diagnostics at CWRU. “If they point in different directions, the architecture is disrupted — the entropy, or disorder, and heterogeneity are higher. “

In the direct comparison, two physicians and the computer program analyzed MRI scans from 15 patients from University of Texas Southwest Medical Center. One neuroradiologist diagnosed seven patients correctly, and the second physician correctly diagnosed eight patients. The computer program was correct on 12 of the 15.

Tiwari and Madabhushi do not expect the computer program would be used alone, but as a decision support to assist neuroradiologists in improving their confidence in identifying a suspicious lesion as radiation necrosis or cancer recurrence.

Next, the researchers are seeking to validate the algorithms’ accuracy using a much larger collection of images from across different sites.

For more information: www.ajnr.org

Related Content

MRI Metal Artifact Reduction Poses Minimal Thermal Risk to Hip Arthroplasty Implants
News | Magnetic Resonance Imaging (MRI) | May 23, 2019
Clinical metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) protocols at 3 Tesla (3T) on hip...
Proton Therapy Lowers Risk of Side Effects Compared to Conventional Radiation
News | Proton Therapy | May 23, 2019
Cancer patients getting proton therapy instead of traditional photon radiation are at a significantly lower risk of...
VolparaDensity With Tyrer-Cuzick Model Improves Breast Cancer Risk Stratification
News | Breast Density | May 22, 2019
Research has demonstrated use of Volpara Solutions' VolparaDensity software in combination with the Tyrer-Cuzick Breast...
Brazil's Santa Casa Hospital System Chooses Carestream for Unified Diagnostic Workflow
News | PACS | May 22, 2019
Santa Casa de Misericordia has selected Carestream to replace its legacy diagnostic workflow technology across all...
Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carrie Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carri Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Feature | Henry Ford Hospital | May 21, 2019 | Dave Fornell, Editor
Henry Ford Hospital thought leaders regularly speak at the radiation oncology and radiology conferences about new res
MaxQ AI Launches Accipio Ax Slice-Level Intracranial Hemorrhage Detection
Technology | Computer-Aided Detection Software | May 21, 2019
Medical diagnostic artificial intelligence (AI) company MaxQ AI announced that Accipio Ax will begin shipping in August...
Life Image and Bialogics Analytics Partner to Deliver Imaging Business Intelligence
News | Analytics Software | May 21, 2019
Life Image and business intelligence analytics provider Bialogics Analytics have formed a strategic partnership that...
Videos | Radiation Therapy | May 21, 2019
This is a walk through of the ViewRay MRIdian MRI-guided radiotherapy system installed at ...
Partial Breast Irradiation Effective, Convenient Treatment Option for Low-Risk Breast Cancer
News | Radiation Therapy | May 20, 2019
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast...