A group of CNIO researchers headed by Manuel Valiente have found a new strategy that could be used in patients with brain metastasis to detect radioresistance.

Manuel Valiente, image courtesy of CNIO

April 26, 2022 — A group of CNIO researchers headed by Manuel Valiente have found a new strategy that could be used in patients with brain metastasis to detect radioresistance.

They found that a simple blood test can help detect patients with resistance to brain radiotherapy and identified a drug that might reverse it. A multi-center clinical study is now under way to validate the predictive potential of this biomarker through the National Brain Metastasis Network (Spanish acronym: RENACER).

The study is being published in Nature Medicine this week.

“We are really happy, because we practically achieved a threefold result: we are beginning to understand the molecular mechanisms underlying radiotherapy resistance; we can stratify patients so as to enable personalized therapies; and we found a drug that reverses radioresistance,” Valiente said.

Brain metastasis from lung and breast cancer and from melanoma

Between 20 and 40 per cent of solid tumors develop brain metastasis, mainly derived from the lung, the breast and the skin (melanoma). As many drugs cannot cross the blood-brain barrier, systemic treatments are quite ineffective. Radiotherapy is, thus, one of the most common treatment options for brain metastasis.

However, patients who undergo radiation, specifically whole-brain radiotherapy, rarely experience a significant impact on tumor progression while they are at high risk of side effects from the impact of the therapy on healthy tissue. According to the authors of the study, the inefficacy of radiotherapy on metastases indicates the “emergence of radiation resistance.”

Resistance to radiotherapy in brain metastasis has not been thoroughly studied yet. The Brain Metastasis Group at the CNIO, led by Manuel Valiente, carried out research using animal models and patient-derived 3D cell culture models that reproduce tumor tissue. In addition, data from large patient cohorts were analyzed for lung cancer, breast cancer and melanoma metastasis to the brain.

Blood-based radiotherapy resistance biomarker

The study identified a pathway involved in the emergence of radiotherapy resistance, specifically, increased levels of S100A9 protein associated with limited sensitivity to this therapy.

According to the authors of the study, “endogenous levels of S100A9 are associated with the response to whole-brain radiotherapy in lung and breast adenocarcinoma and melanoma brain metastasis.”

To CNIO researchers’ surprise, S100A9 can be easily found in the blood of patients. “I did not expect it to be that simple,” said Valiente, “but there is a correlation between the levels of S100A9 in the blood of patients and their resistance to radiotherapy.”

Making cancer cells more sensitive to radiation therapy

Another promising result is that an existing drug known to inhibit the receptor that binds to S100A9 reverses radioresistance. The drug has been previously tested in clinical trials for other disorders (Alzheimer’s disease), where it proved to be safe in patients and able to cross the blood-brain barrier and enter the brain.

With the help of the METPlatform tool, it was found that the drug could be used to transform radioresistant metastases from both mice and patient-derived organotypic cultures into sensitive ones.

In the article published in Nature Medicine, the authors of the study report “a comprehensive strategy that can be used to identify patients who might benefit from whole-brain radiotherapy as well as to design combined therapies to overcome radiation resistance.”

“Our findings could lead to a new approach to radiotherapy for cancer patients,” they added. The expression of the S100A9 protein in the blood would enable them to “identify patients who might benefit from radiotherapy, preventing the neurocognitive decline that follows radiation therapy in patients with high radioresistance. Besides, S100A9 receptor inhibitors could enable the use of lower radiation doses to kill cancer cells, thus minimizing collateral normal brain tissue damage and enhancing the benefits for patients.”

The work has been funded by the Spanish Ministry of Science and Innovation, the Portuguese Foundation for Science and Technology, Fundació La Marató de TV3, Fundación Ramón Areces, the Worldwide Cancer Research, the Cancer Research Institute, La Asociación Española contra el Cáncer, the European Research Council, the Boehringer-Ingelheim Fonds and “La Caixa” Foundation, among others.

For more information: https://www.cnio.es/en/

Related Brain Metastases Content:

PET Imaging Adds Valuable Information to Brain Metastasis Monitoring

Blue Earth Diagnostics Announces Dosing of Initial Patient in Phase 3 REVELATE Clinical Trial of 18F-Fluciclovine PET Imaging for Detection of Recurrent Brain Metastases

Radiosurgery Reduces Cognitive Decline Without Compromising Survival for Patients with 4+ Brain Metastases

Related Content

News | Radiation Oncology

June 5, 2023 — Volpara Health Technologies Ltd. announces its founding membership in CancerX, a public-private ...

Time June 05, 2023
News | Linear Accelerators

June 5, 2023 — UMC Utrecht researchers in the Netherlands are starting two new projects to treat cancer with image ...

Time June 05, 2023
Feature | Radiology Imaging | By Melinda Taschetta-Millane

It's been a fruitful month for itnonline.com! Here's a look at what ITN viewers found to be most interesting during the ...

Time June 01, 2023
News | Radiation Oncology

May 31, 2023 — Elekta announced the launch of the first phase of Elekta ONE*, its most comprehensive and advanced ...

Time May 31, 2023
News | Radiation Therapy

May 30, 2023 — The first treatment, for a patient with prostate cancer, was successfully carried out on April 28. Yonsei ...

Time May 30, 2023
News | Breast Density

May 25, 2023 — Researchers from the Mayo Clinic (Rochester, MN) and University of California, San Francisco confirmed ...

Time May 25, 2023
News | Breast Imaging

May 25, 2023 — GE HealthCare, a leader in breast cancer care technology and diagnostics, has today announced that NCCN ...

Time May 25, 2023
News | Ultrasound Women's Health

May 25, 2023 — According to an accepted manuscript published in ARRS’ own American Journal of Roentgenology (AJR), deep ...

Time May 25, 2023
News | Oncology Information Management Systems (OIMS)

May 24, 2023 — RaySearch Laboratories AB announced that the oncology information system RayCare* (* subject to ...

Time May 24, 2023
News | ASTRO

May 23, 2023 — More than 9 in 10 radiation oncologists report that their practices face clinical staff shortages ...

Time May 23, 2023
Subscribe Now