News | January 27, 2009

Children's Hospital Offers New Therapy for Relapsed Neuroblastoma Patients

January 27, 2009 - Children’s Hospital Boston, MA, is offering a new therapy that uses radioiodine labeled metaiodobenzylguanidine (I-131 MIBG) to treat patients with relapsed neuroblastoma, marking the first time this therapy is being used in the New England region.

Neuroblastoma is a cancerous tumor that begins in nerve tissue of infants and very young children, and usually occurs in the abdomen but can occur in other sites near the spine and spread quickly to other areas of the body. It affects roughly 600 children a year in the U.S. and can have a varied clinical presentation – some cases are localized and easy to treat, while more than half of the children have aggressive disease that has spread at diagnosis and is much harder to cure.

Conventional treatments for neuroblastoma include surgery, local radiation and high-dose chemotherapy. “We are always looking for novel ideas and strategies to try to cure relapsed patients whose neuroblastoma is resistant to traditional treatments,” said Suzanne Shusterman, MD, attending physician at Children’s Hospital Boston and Dana-Farber Cancer Institute who oversees the neuroblastoma program. “I-131 MIBG is one of the most effective therapies for children with relapsed neuroblastoma, with a response rate of almost forty percent. While it doesn’t cure, I-131 MIBG can allow patients to gain control of their disease and, in combination with other treatments, bring them closer to being cured.”

Originally developed as a blood pressure medicine, MIBG is a compound that is selectively absorbed by certain types of nervous tissue, including neuroblastoma cells. For many years it has been used diagnostically to determine where cancerous activity is occurring within the body. More recently, oncologists began using it to deliver targeted radiation to neuroblastoma cells by binding it to a radioactive isotope of iodine (I-131). Once bound together, the radioactive MIBG is administered to a child through an intravenous line (IV) and absorbed by tumor cells, which are killed by the radiation emitted by the radioactive I-131. Children’s is the only center in New England, and just one of a handful in the United States, offering this advanced treatment.

“This treatment is a way of targeting radiation to kill tumors while sparing normal tissues,” said Lisa Diller, M.D., clinical director of Pediatric Oncology at Dana-Farber Cancer Institute and Children’s Hospital Boston. “We are very excited that I-131 MIBG will be an important therapy in eradicating neuroblastoma.”

The actual infusion of I-131 MIBG is a short procedure, lasting approximately one to two hours. Because this treatment involves delivering high doses of radiation, a patient will stay in a specially designed room in the hospital for three to seven days after the infusion. The I-131 MIBG room is a 256 square-foot hospital room located in the stem cell transplant unit on the sixth floor of Children’s Hospital. The room has added protective features to help manage the therapy safely for the benefit of both patients and staff, and has an anteroom where parents may stay to help with the care of their child and be in close proximity throughout the therapy. During the day parents may safely spend time with their child following specific safety procedures designed to protect them as well as the hospital staff.

Compared to chemotherapy, I-131 MIBG is very well tolerated and affords a good quality of life for patients traditionally overwhelmed with hospital visits. The most common side effects are low platelets and low white blood cell counts about a month after receiving the treatment, both of which can be easily managed. Follow up visits to the hospital are also limited, most often taking place six to eight weeks after the date of infusion.

Almost all patients report at least a subjective response to I-131 MIBG. “The nice thing with I-131 MIBG is that most patients, even patients who don’t have a response that we can see by standard imaging techniques, have a decrease in their level of pain and improvement in their quality of life,” continued Shusterman.

S. Ted Treves, M.D., chief of the division of Nuclear Medicine at Children’s, commented, “The availability of this therapy demonstrates a true team effort and commitment from experts in multiple disciplines across the hospital – from pediatric oncology to nursing, child life, nuclear medicine and radiation safety.”

For more information: www.childrenshospital.org

Related Content

PET Tracer Gauges Effectiveness of Promising Alzheimer's Treatment

Longitudinal PET imaging with 18F-AV45. PET imaging shows the average 18F-AV45 uptake per animal group at 8 and 13 months of age. A significant interaction of genotype treatment was observed in the cortex (p = 0.0248), hippocampus (p = 0.0071) and thalamus (p = 0.0084), indicating reduced [18F]-AV45 uptake in BACE1 inhibited transgenic mice. Credit: MICA, University of Antwerp, Belgium.

News | Radiopharmaceuticals and Tracers | December 28, 2017
In the December featured basic science article in The Journal of Nuclear Medicine, Belgian researchers report on the...
Vital Unveils Newest Vitrea Advanced Visualization Release at RSNA 2017
Technology | Advanced Visualization | December 04, 2017
Vital Images unveiled the newest version of Vitrea Advanced Visualization software, the cornerstone of its imaging...
Videos | Radiation Therapy | November 15, 2017
Chris Toth, president, global commercial and field operations for Varian, takes a tour of Varian’s new product introd
Sam Hancock, Ph.D.

Sam Hancock, Ph.D.

Sponsored Content | Case Study | Radiation Oncology | November 06, 2017
In establishing the new Southeast Cancer Center (Cape Girardeau, Mo.), clinic officials not only had the opportunity to...
Proton therapy doesn’t get as near to the heart and other internal organs as X-ray therapy does. (Image courtesy of Provision Cares Proton Therapy Center.)

Proton therapy doesn’t get as near to the heart and other internal organs as X-ray therapy does. (Image courtesy of Provision Cares Proton Therapy Center.)

Feature | Proton Therapy | November 06, 2017 | By Larisa Brass, MPH
Thirty-three. Twenty-nine. Sixty-four. These are the ages of the breast cancer patients who have walked through the...
Michael J. Fox Foundation and Tau Consortium Developing PET Tracers for Neurodegenerative Disease
News | Radiopharmaceuticals and Tracers | October 27, 2017
The Michael J. Fox Foundation for Parkinson's Research (MJFF) and the Tau Consortium announced a funding partnership to...
Netherlands Cancer Institute Exploring Molecular Imaging Technology for Prostate Cancer Surgery
News | Molecular Imaging | October 26, 2017
The Netherlands Cancer Institute (NKI) announced it has received funding from the Dutch Cancer Society (KWF...
SNMMI Publishes New FDG PET/CT Appropriate Use Criteria
News | PET-CT | October 25, 2017
The Society of Nuclear Medicine and Molecular Imaging (SNMMI) has published appropriate use criteria (AUC) for FDG PET/...
Videos | Women's Health | October 23, 2017
William Hall, M.D., radiation oncologist in the Department of Radiation Oncology at PeaceHealth St. Joseph Medical...
Biodex Unveils Atomlab 500 Dose Calibrator and Wipe Test Counter
Technology | Nuclear Imaging | October 19, 2017
Biodex Medical Systems announced the full release of the Atomlab Dose Calibrator and Wipe Test Counter to the market...
Overlay Init