News | February 26, 2015

Cherenkov Effect Improves Radiation Therapy for Cancer Patients

Researchers say blue light can help calculate dosimetry of X-ray photons, protons and electrons

Cherenkov effect, radiation therapy, treatment planning, dosimetry

February 26, 2015 — Investigators from Dartmouth College’s Norris Cotton Cancer Center have discovered how the complex parts of the blue light known as the Cherenkov effect can be measured and used in dosimetry to make radiation therapies safer and more effective. Findings of the study, led by Brian W. Pogue, Ph.D., and Ph.D. candidates Adam K. Glaser and Rongxiao Zhang, were published in the journal Physics in Medicine and Biology.

"The beauty of using the light from the Cherenkov Effect for dosimetry is that it's the only current method that can reveal dosimetric information completely non-invasively in water or tissue," said Glaser.

Although the phenomenon has been constructively utilized for decades in high-energy particle and astrophysics, only recently has it been investigated during radiation therapy. In this study, investigators separately measured emissions of X-ray photons, protons and electrons, and they found widely varying utility.

Based on the findings of where dose correlates with Cherenkov emission, the Dartmouth team concluded that for X-ray photons, the light emission would be optimally suited for: narrow beam stereotactic radiation therapy and surgery validation studies; verification of dynamic intensity-modulated and volumetric modulated arc therapy treatment plans in water tanks; near mono-energetic sources (e.g., Co-60 and brachytherapy sources); and also for entrance and exit surface imaging dosimetry of both narrow and broad beams.

For electron use, Cherenkov emission was found to be suitable only for surface dosimetry applications. Finally, for proton dosimetry, there exists a fundamental lack of Cherenkov emission at the Bragg peak, making the technique of little use, although investigators say that post-irradiation detection of light emission from radioisotopes could prove to be useful.

"By detecting this light, we can pursue novel applications of Cherenkov light emission during radiation therapy to help clinicians improve the overall treatment outcome for patients," explained Pogue.

The collaborators intend to pursue further investigation at Norris Cotton Cancer Center to find other applications where this "free" light can be useful, such as continuing clinical trials in which the Cherenkov light from X-ray beams is imaged directly from a patient's tissue surface during radiation therapy.

For more information: www.cancer.dartmouth.edu

Related Content

Electronic Brachytherapy Effective in Long-Term Study of 1,000 Early-Stage Breast Cancers
News | Brachytherapy Systems, Women's Healthcare | January 07, 2019
Breast cancer recurrence rates of patients treated with intraoperative radiation therapy (IORT) using the Xoft Axxent...
Brachytherapy Alone Superior Treatment for Intermediate-Risk Prostate Cancer
News | Brachytherapy Systems | January 04, 2019
Patient-reported outcomes (PROs) indicated a significantly different clinician and patient-reported late toxicity...
RayStation 8B Released With Machine Learning Applications for Treatment Planning
Technology | Treatment Planning | December 27, 2018
RaySearch Laboratories released RayStation 8B, the latest version of the radiation therapy treatment planning system (...
Axillary Radiotherapy and Lymph Node Surgery Yield Comparable Outcomes for Breast Cancer
News | Radiation Therapy | December 18, 2018
Early-stage breast cancer patients with cancer detected in a sentinel lymph node biopsy had comparable 10-year...
RaySearch Developing RayCommand Treatment Control System for U.K. Proton Therapy Facility
Technology | Radiation Therapy | December 10, 2018
RaySearch has decided to develop a treatment control system, RayCommand, to act as a link between its RayStation...
Mirada Medical Joins U.K. Consortium Exploring Healthcare AI
News | Artificial Intelligence | December 04, 2018
Mirada Medical, a leading global brand in medical imaging software, will form part of an artificial intelligence (AI)...
Sponsored Content | Videos | Radiation Oncology | November 30, 2018
Accuray's philosophy is to personalize treatments to exactly fit the patient.
Ohio State University to Open Region’s First Proton Therapy Facility

Image courtesy of The Ohio State University James Comprehensive Cancer Center

News | Proton Therapy | November 21, 2018
The Ohio State University Wexner Medical Center and the Arthur G. James Cancer Hospital and Richard J. Solove Research...
Immune Inflammatory Levels Linked to Disease-Free Survival in Prostate Cancer
News | Prostate Cancer | November 19, 2018
Data from a validation study of a high-risk prostate cancer trial suggests that higher levels of pretreatment...