News | February 26, 2015

Cherenkov Effect Improves Radiation Therapy for Cancer Patients

Researchers say blue light can help calculate dosimetry of X-ray photons, protons and electrons

Cherenkov effect, radiation therapy, treatment planning, dosimetry

February 26, 2015 — Investigators from Dartmouth College’s Norris Cotton Cancer Center have discovered how the complex parts of the blue light known as the Cherenkov effect can be measured and used in dosimetry to make radiation therapies safer and more effective. Findings of the study, led by Brian W. Pogue, Ph.D., and Ph.D. candidates Adam K. Glaser and Rongxiao Zhang, were published in the journal Physics in Medicine and Biology.

"The beauty of using the light from the Cherenkov Effect for dosimetry is that it's the only current method that can reveal dosimetric information completely non-invasively in water or tissue," said Glaser.

Although the phenomenon has been constructively utilized for decades in high-energy particle and astrophysics, only recently has it been investigated during radiation therapy. In this study, investigators separately measured emissions of X-ray photons, protons and electrons, and they found widely varying utility.

Based on the findings of where dose correlates with Cherenkov emission, the Dartmouth team concluded that for X-ray photons, the light emission would be optimally suited for: narrow beam stereotactic radiation therapy and surgery validation studies; verification of dynamic intensity-modulated and volumetric modulated arc therapy treatment plans in water tanks; near mono-energetic sources (e.g., Co-60 and brachytherapy sources); and also for entrance and exit surface imaging dosimetry of both narrow and broad beams.

For electron use, Cherenkov emission was found to be suitable only for surface dosimetry applications. Finally, for proton dosimetry, there exists a fundamental lack of Cherenkov emission at the Bragg peak, making the technique of little use, although investigators say that post-irradiation detection of light emission from radioisotopes could prove to be useful.

"By detecting this light, we can pursue novel applications of Cherenkov light emission during radiation therapy to help clinicians improve the overall treatment outcome for patients," explained Pogue.

The collaborators intend to pursue further investigation at Norris Cotton Cancer Center to find other applications where this "free" light can be useful, such as continuing clinical trials in which the Cherenkov light from X-ray beams is imaged directly from a patient's tissue surface during radiation therapy.

For more information: www.cancer.dartmouth.edu

Related Content

Six of the top 20 radiotherapy stories in 2019 involved proton therapy. This includes two video inetrviews shot during a site visit to the Northwestern Medicine Proton Center in the Chicago suburb of Warrenville, Ill.

Six of the top 20 radiotherapy stories in 2019 involved proton therapy. This includes two video inetrviews shot during a site visit to the Northwestern Medicine Proton Center in the Chicago suburb of Warrenville, Ill.

Feature | Radiation Oncology | January 03, 2020 | Dave Fornell, Editor
January 3, 2020 — Here is the top 20 pieces of radiation oncology content on the Imaging Technology News (ITN) websit
Artificial intelligence was by far the hottest topic in both radiology and radiation oncology in 2019, and AI is the subject of 8 of the top 2019 ITN videos. This image is a prostate treatment plan created autonomously by an AI algorithm from RaySearch and is the subject of the No. 2 video on the list. Deep learning in radiology and radiation oncology.

Artificial intelligence was by far the hottest topic in both radiology and radiation oncology in 2019, and AI is the subject of 8 of the top 2019 ITN videos. This image is a prostate treatment plan created autonomously by a machine learning algorithm from RaySearch and is the subject of the No. 2 video on the list. 

Feature | December 30, 2019
Here are the top 20 best performing videos posted on the Imaging Technology News website (ITN) from the past year, ba
Beamscan MR for ViewRay MRIdian and for Elekta Unity

Beamscan MR for ViewRay MRIdian and for Elekta Unity

News | Radiation Therapy | December 23, 2019
December 23, 2019 — The Beamscan MR motorized 3-D...
radiation exposure triggers an immune response in the brain that severs connections between nerve cells
News | Clinical Trials | December 17, 2019
December 17, 2019 — One of the potentially life-altering side effects that patients experience after...
In connection with the collaboration, Elekta has committed to make an investment in ViewRay representing approximately 9.9 percent of the shares of ViewRay’s common stock
News | Radiation Therapy | December 13, 2019
December 13, 2019 — Elekta announced that the company has sign
UFHPTI expands its proton therapy capacity and treatment range with the Proteous One
News | Radiation Therapy | December 12, 2019
December 12, 2019 — IBA (Ion Beam Applications SA) announced that

Image courtesy of Elekta 

News | Radiation Therapy | December 11, 2019
December 11, 2019 — A new clinical guideline from the American Soci...