Conventional 3D T1W image (A) without segmentation, (B) with segmentation by Neuroquant, and (C) with segmentation by Freesurfer; ultrafast 3D-EPI T1W image (D) without segmentation, (E) with segmentation by Neuroquant, and (F) with segmentation by Freesurfer. Pallidum (asterisks) appears larger for Freesurfer (C, F) than for NeuroQuant (B, E), but appears similar in size between two sequences for each software package. For both software packages, bilateral frontal and occipital cortices (B, C) at bone-tiss

Conventional 3D T1W image (A) without segmentation, (B) with segmentation by Neuroquant, and (C) with segmentation by Freesurfer; ultrafast 3D-EPI T1W image (D) without segmentation, (E) with segmentation by Neuroquant, and (F) with segmentation by Freesurfer. Pallidum (asterisks) appears larger for Freesurfer (C, F) than for NeuroQuant (B, E), but appears similar in size between two sequences for each software package. For both software packages, bilateral frontal and occipital cortices (B, C) at bone-tissue interface appear more color-coded for conventional than for ultrafast sequence, contributing to larger cortical gray matter for conventional sequence


January 5, 2022 — According to an article in ARRS’ American Journal of Roentgenology (AJR), brain volume measurements in memory-impaired patients show significant differences and systematic biases between conventional and ultrafast 3D T1-weighted (T1W) MRI sequences.

“In patients for whom severe motion artifact precludes use of the conventional sequence, the ultrafast sequence may be useful to enable brain volumetry,” wrote corresponding author Hye Jin Baek of Gyeongsang National University and Changwon Hospital in Korea. “However, the current conventional 3D T1W sequence remains preferred in patients who can tolerate the standard examination.”

To compare automated brain volume measurements between conventional 3D T1W and ultrafast 3D echo-planar imaging (EPI) T1W sequences, Baek and colleagues retrospectively studied 36 patients (25 women, 11 men; mean age, 68 years) with memory impairment who underwent 3-T brain MRI. Examinations included both isotropic 3D T1W using inversion recovery gradient-recalled echo sequence (slice, 1.0 mm; acquisition, 3:04) and, in patients exhibiting motion, isotropic 3D EPI T1W sequence (slice, 1.2 mm; acquisition, 0:30). Using NeuroQuant (CorTechs Labs) and FreeSurfer (Harvard University) software to automate brain segmentation, measurements were compared between sequences for nine regions in each hemisphere.

For automated brain volumetry from ultrafast 3D EPI T1W imaging, compared with conventional 3D T1W imaging, most regions demonstrated at least substantial agreement between the two sequences—yet also significantly different mean values, moderate or large effect sizes, and consistent systematic biases with wide limits of agreement.

“The variation between the two sequences was observed in subset analyses of 16 patients with, and 20 patients without, Alzheimer disease,” the authors of this AJR article added.

For more information: www.arrs.org


Related Content

News | Radiology Business

The issue of sustainability in healthcare has gained increasing focus over the past several years. During a 2022 plenary ...

Time May 06, 2025
arrow
News | Pediatric Imaging

April 10, 2025 — Cincinnati Children’s and GE HealthCare will form a strategic research program focused on driving ...

Time April 10, 2025
arrow
News | Radiology Imaging

Jan. 15, 2025 — University of California, San Francisco (UCSF) Department of Radiology & Biomedical Imaging and GE ...

Time January 27, 2025
arrow
News | Contrast Media

Jan. 10, 2025 – Bayer has announced positive topline results of the Phase III QUANTI studies evaluating the efficacy and ...

Time January 14, 2025
arrow
News | Radiology Imaging

Nov. 13, 2024 — Agfa Radiology Solutions will feature live demonstrations of state-of-the-art digital X-ray rooms ...

Time November 14, 2024
arrow
News | Women's Health

Aug. 19, 2024 — GE HealthCare recently announced a collaboration with the University of California San Diego School of ...

Time August 29, 2024
arrow
News | Computed Tomography (CT)

SPONSORED CONTENT — Fujifilm’s latest CT technology brings exceptional image quality to a compact and user- and patient ...

Time August 06, 2024
arrow
News | Radiology Business

July 31, 2024 — The American Registry of Radiologic Technologists (ARRT) announced the three Registered Technologists (R ...

Time July 31, 2024
arrow
Feature | Computed Tomography (CT) | By Melinda Taschetta-Millane

In the ever-evolving landscape of medical imaging, computed tomography (CT) stands out as a cornerstone technology ...

Time July 30, 2024
arrow
Videos | Radiology Business

Find actionable insights to achieve sustainability and savings in radiology in this newest of ITN’s “One on One” video ...

Time July 30, 2024
arrow
Subscribe Now