Greg Freiherr, Industry Consultant
Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Blog | Greg Freiherr, Industry Consultant | Radiology Imaging| November 17, 2016

Data Management Will Change: The "How" Could Surprise You

machine learning

Image courtesy of Pixabay

Data are streaming faster and in greater quantities than ever before. These data take the form of pictures coming from imaging machines. They may be ECGs, digital slides from pathology, or vital signs captured by wrist-wrapped fitness devices.

How great would it be to process these data efficiently so we can use the analyses to help patients or boost department productivity?

It's obvious that collecting data simply for the sake of doing so makes no sense. But making sense of this torrent of data is not easy and it's only going to become more difficult. Inevitably, unless we change our ways, some data are going to be collected for no other reason than the requirement that those data are collected. And the result won't be pretty.

With the best intentions, many years ago, I "loaned" a source to a staff writer. I suggested that he call my source for background on a story I had assigned him to write. I later learned that the writer began the conversation with "I don't know why I'm calling you, but I have been told to do it."

It was an eye-opener for me not only in my relationship with that writer but in the realization that unless a person chooses to go a certain way, the trip will be neither productive nor enjoyable.

 

Overcoming An Old-School Mindset

People being what we are, clearly more is needed than just introducing data streams to an operation or requiring their analyses. The staff being impacted by those streams must buy into their use. Doing so will make the difference between connectivity and productivity, thinking in analog versus digital.

How we think about something determines not only what we do but how we do it. Managers now face the prospect of delegating analytic duties to machines.

Deep learning algorithms (a.k.a. machine intelligence) are gliding under the radar into our daily lives. They make daily tasks easier. An example of this happens every time Google auto completes a question based on its understanding of our interests or throws ads at us on the basis of what we have recently searched or may be interested in.

In the future, deep learning algorithms will be available to help make sense of the increasingly numerous and complex data streams being sent our way. Choosing what analyses will be delegated — and which will remain under human control — is only one type of question that must be answered.

I suspect that regardless of which analyses are performed by machines, unless people embrace their use, the analyses will be given less weight than those made by people. This won't change until the human-machine culture changes. And this has begun.

As an old schooler, I have been a little annoyed when passing someone who is speaking conversationally into a cell phone earpiece. To be honest, I typically mistake these conversations as being directed at me, causing me to verbally respond or in some way engage with the stranger, only to pull back with a (hopefully) inaudible apology.

I like to think that I have been getting better at distinguishing personal conversations. I expect this to continue as I experience more people talking to machines. And there is plenty of this going on.

We are talking to computer surrogates, Siri and Cortana. And to Amazon's Alexa via Echo (and Echo Dot). I am, in fact, dictating this blog to a speech recognition program integrated with my computer.

Increasing familiarity with machines is necessary, if we are to become fully immersed in the digital world of tomorrow and to make full use of the data it can provide. We are already hard-pressed to keep up with the extraordinary volumes of data streaming at them. If we are to use machines to make sense of these data in the future, we will need to improve the way we interact with machines.

 

Changing How We Think

We may soon depend on visual analytics to make sense of data. Historically we have done so with bar graphs and line charts. These are being leveraged to help us understand collections of data vis-à-vis dashboards.

As we use voice ever more to interface with our computing and mobile devices, we will hear progressively more synthesized voices responding. It has even been proposed that, in the future, analyses — visual and audible — may be accompanied by music that varies like the musical soundtrack of a movie. This music will be added to elicit certain kinds of responses. Rather than sad or happy, data soundtracks might indicate positive or negative analyses with varying levels of intensity inferring whether action should be quick or can be delayed.

Regardless of how analyses are done in the future, by whom or what, and how these analyses are presented, it will be designed to immerse us in the data. And that immersion may change the way we think.

 

Editor's note: This is the third blog in a four-part series on Changing the Look of Radiology. The first blog, "Risk Abatement May Determine the Future of Radiology" can be found here. The second blog, "How Radiology Can Improve Outcomes and Make Medicine Better," can be found here. The series can be found here.

 

Related Content

iCAD's ProFound AI Wins Best New Radiology Solution in 2019 MedTech Breakthrough Awards
News | Computer-Aided Detection Software | September 09, 2019
iCAD Inc. announced MedTech Breakthrough, an independent organization that recognizes the top companies and solutions...
A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images

A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images. The algorithm, described at the SBI/ACR Breast Imaging Symposium, used deep learning, a form of machine learning, which is a type of artificial intelligence. Image courtesy of Sarah Eskreis-Winkler, M.D.

Feature | Society of Breast Imaging (SBI) | September 06, 2019 | By Greg Freiherr
The use of smart algorithms has the potential to make healthcare more efficient.
Philips and Fujifilm booths at SIIM 2019.

Philips and Fujifilm booths at SIIM 2019.

Feature | SIIM | September 06, 2019 | By Greg Freiherr
Pragmatism from cybersecurity to enterprise imaging was in vogue at the 2019 meeting of the Society of Imaging Inform
Sudhen Desai, M.D.

Sudhen Desai, M.D.

Feature | Pediatric Imaging | September 04, 2019 | By Jeff Zagoudis
Burnout has become a popular buzzword in today’s business world, meant to describe prolonged periods of stress in the
Heath information technology diagram showing use of cloud storage.
Feature | Archive Cloud Storage | September 04, 2019 | Tyna Callahan
In healthcare, critical systems are being used to deliver vital information and services 24x7x365.
Global Diagnostics Australia Incorporates AI Into Radiology Applications
News | Artificial Intelligence | September 04, 2019
Global Diagnostics Australia (GDA), a subsidiary of the Integral Diagnostics Group (IDX), has adopted artificial...
The CT scanner might not come with protocols that are adequate for each hospital situation, so at Phoenix Children’s Hospital they designed their own protocols, said Dianna Bardo, M.D., director of body MR and co-director of the 3D Innovation Lab at Phoenix Children’s.

The CT scanner might not come with protocols that are adequate for each hospital situation, so at Phoenix Children’s Hospital they designed their own protocols, said Dianna Bardo, M.D., director of body MR and co-director of the 3D Innovation Lab at Phoenix Children’s.

Sponsored Content | Case Study | Radiation Dose Management | September 04, 2019
Radiation dose management is central to child patient safety. Medical imaging plays an increasing role in the accurate...
Medical Imaging Rates Continue to Rise Despite Push to Reduce Their Use
News | Radiology Imaging | September 03, 2019
Despite a broad campaign among physician groups to reduce the amount of medical imaging, use rates of various scans...
The Siemens Ysio Max digital radiography system.
Webinar | Digital Radiography (DR) | September 03, 2019
The Webinar "Benefits of Advanced Automation in X-ray" will be presented Wednesday, Sept. 25 at 1 p.m.
A SPECT nuclear scan of the heart to show perfusion defects in the myocardium due to coronary artery blockages or heart attack. The imaging uses the Mo-99 based medical imaging isotope Tc-99m. The U.S. government has created policy to move away from use of highly enriched uranium (HEU) to low-enriched uranium (LEU) for Mo-99 isotope production, but there is one hold out who has not yet converted before a 2020 deadline. Photo courtesy of Philips Healthcare.

A SPECT nuclear scan of the heart to show perfusion defects in the myocardium due to coronary artery blockages or heart attack. The imaging uses the Mo-99 based medical imaging isotope Tc-99m. The U.S. government has created policy to move away from use of highly enriched uranium (HEU) to low-enriched uranium (LEU) for Mo-99 isotope production, but there is one holdout who has not yet converted before a 2020 deadline. Photo courtesy of Philips Healthcare.

Feature | Nuclear Imaging | August 30, 2019 | Dave Fornell, Editor
In a surprising move, the National Institute for Radioelements (IRE) has applied for a new license to export highly e