Greg Freiherr, Industry Consultant
Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Blog | Greg Freiherr, Industry Consultant | Radiology Imaging | November 09, 2016

How Radiology Can Improve Outcomes and Make Medicine Better

radiology outcomes

Graphic courtesy of Pixabay

Much has been said about the potential of outcomes to change the practice of medicine. Through comparative studies, outcomes research could point out how, under certain circumstances, the use of one imaging technology might be better than others. It might simplify the choice and process by which referring physicians order exams, encouraging best practices not only in the choice of a modality but in the use of specific scan protocols.

Increased efficiency might result, leading to the better use of personnel and reduced financial costs. Effective treatment might start sooner, resulting in clinical, financial and operational benefits. Reimbursement might be increased for procedures that boost efficiency, reduce overall cost or improve patient care. This would reverse the decades-old trend of across-the-board cuts in reimbursement for imaging. Supporting such a change might be, for example, a reduction in hospital readmission as an indicator of improved patient management — following early intervention made possible by a type of imaging.

This is all speculation, of course, based on the premise that outcomes research could identify impacts on the everyday care of patients. Reduced hospital readmission very likely will depend on multiple factors. At the very least, it will depend on practices and resources at individual hospitals.

 

Consider the Source

It makes sense, therefore, when planning an outcomes-based study, to first consider the strategic goals and initiatives of the hospitals in which the research will be conducted. Also important is the context established by hospital resources and staff. These will vary widely, for example, from a community hospital to a tertiary medical facility. They may vary even further if either is part of an integrated delivery network.

If conditions and resources are controlled, it may be possible to compare the relative value of modalities. But differences in staff training and varying capabilities of technology at different facilities could skew results when attempting to migrate findings.

What may be less susceptible — and could yield more immediate results, as well as be more effective at individual facilities — will be studies that use the institution as its own control. Efficiency would be the cornerstone of such efforts.

Increased efficiency might be achieved through the elimination of duplicative or ineffective services. Doing so might speed certain patients through the healthcare system, improving health as well as yielding financial savings. Doing so would achieve the goal of value-based medicine — improved healthcare at a reduced cost, albeit on a modest and local scale. It would, however, have the added benefit of improving patient satisfaction, which institutions are increasingly paying attention.

 

Patient Satisfaction

I like it when the guy stocking shelves nods to me as I walk the aisle of a grocery store and when the electronics clerk walks me to housewares to find what I can’t. But in healthcare … come on. If I’m a patient, I want the staff to make me feel better fast. Sure, be friendly. But don’t apply a social salve when I need relief from a physical ailment.

What radiology can do toward that end is what radiology is uniquely positioned to do. Take, for example, a widely used protocol to work up diabetics suspected of a bone infection. This infection, called osteomyelitis, often requires surgery. Diabetics are particularly susceptible.

Those showing signs of the infection may go through a process that ratchets up from less to more invasive and effort-intensive technologies. Radiography may be followed by MRI, then SPECT using white blood cells drawn from the patient and radiolabeled with a gamma-emitting isotope. This three-step process can take up to six days. Going directly from radiography to SPECT/CT — and eliminating MRI, which can add uncertainty as well as expense and time — streamlines the process by thousands of dollars and two, or even three days.

Because patients are typically hospitalized during this diagnostic process, collapsing the process shifts care from inpatient to outpatient. This saves money, as it improves care and, ultimately, increases patient satisfaction.

This is just one example of how improving outcomes for patients can bring healthcare closer to the ideals of value-based medicine. And how radiology can play a key role. There are almost certainly others waiting to be uncovered.

As practiced today, routine care is inefficient, quality is variable, and expenses are high. Finding ways to bring these in line is the key to value-based healthcare. We might find these ways if radiology can peel back the layers of medical practice by leveraging the unique technologies that are already at its disposal.

 

Editor's note: This is the second blog in a four-part series on Changing the Look of Radiology. The first blog, "Risk Abatement May Determine the Future of Radiology" can be found here. The series can be found here.

Related Content

Early diagnosis of cancer is one of the highest-priority problem for the healthcare system, because it is critical for overall treatment success and saving patients' lives. Diffusion-weighted magnetic resonance imaging (DWI) may be used to detect a malignancy in various tissues and organs. It has the advantage of providing insight into the diffusion of water molecules in body tissues without exposing patients to radiation.

DWI of the phantom with polyvinylpyrrolidone (PVP) solutions (b value 500 s/mm2). Image courtesy of Kristina Sergunova et al.

News | Magnetic Resonance Imaging (MRI) | June 02, 2020
June 2, 2020 — Early diagnosis of cancer is one of the highest-priority problem for the healthcare system, because it
AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire)

AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire).

News | Artificial Intelligence | May 29, 2020
May 29, 2020 — GE Healthcare announced U.S.
United Imaging's uMR OMEGA is designed to provide greater access to magnetic resonance imaging (MRI) with the world’s first ultra-wide 75-cm bore 3T MRI.
News | Magnetic Resonance Imaging (MRI) | May 27, 2020
May 27, 2020 — United Imaging's...
Off-site imaging companies are playing a key role in the fight against COVID-19
Feature | Coronavirus (COVID-19) | May 26, 2020 | By Sean Zahniser
After the worst of the COVID-19 pandemic has pas
There were several new developments in digital radiography (DR) technology at the 2019 Radiological Society of North America (RSNA) annual meeting. These trends included integration of artificial intelligence (AI) auto detection technologies, more durable glassless detector plates, and technologies to pull more diagnostic data out of X-ray imaging. Some vendors also have redesigned their DR systems to make them more user-friendly and ergonomic. 
Feature | Digital Radiography (DR) | May 26, 2020 | By Dave Fornell
There were several new developments in digital rad...
A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue

A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue. Image courtesy of Xiandoing Xue, UC Davis

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers at the University of California, Davis offers a...
Researchers from Tokyo Metropolitan University have surveyed the amount of gadolinium found in river water in Tokyo. Gadolinium is contained in contrast agents given to patients undergoing medical magnetic resonance imaging (MRI) scans, and it has been shown in labs to become toxic when exposed to ultraviolet rays. The researchers found significantly elevated levels, particularly near water treatment plants, highlighting the need for new public policy and removal technologies as MRI become even more commonp

Samples were taken along rivers around Tokyo. Measurements of rare earth element quantities indicate a clearly elevated amount of gadolinium compared to that in natural shale. Graphics courtesy of Tokyo Metropolitan University

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers from Tokyo Metropolitan...
Lymphocytic Inflammation in a Lung from a Patient Who Died from Covid-19. The gross appearance of a lung from a patient who died from coronavirus disease 2019 (Covid-19) is shown in Panel A (the scale bar corresponds to 1 cm). The histopathological examination, shown in Panel B, revealed interstitial and perivascular predominantly lymphocytic pneumonia with multifocal endothelialitis (hematoxylin–eosin staining; the scale bar corresponds to 200 μm).

Lymphocytic Inflammation in a Lung from a Patient Who Died from Covid-19. The gross appearance of a lung from a patient who died from coronavirus disease 2019 (Covid-19) is shown in Panel A (the scale bar corresponds to 1 cm). The histopathological examination, shown in Panel B, revealed interstitial and perivascular predominantly lymphocytic pneumonia with multifocal endothelialitis (hematoxylin–eosin staining; the scale bar corresponds to 200 μm). Image courtesy of The New England Journal of Medicine

News | Coronavirus (COVID-19) | May 22, 2020
May 22, 2020 — In a new study in the New