News | Cardiovascular Ultrasound | November 19, 2018

Bay Labs and Northwestern Medicine Enroll First Patient in AI Echocardiography Study

Clinical trial evaluates if artificial intelligence helps certified medical assistants perform echocardiograms and detect heart disease in primary care settings

Bay Labs and Northwestern Medicine Enroll First Patient in AI Echocardiography Study

November 19, 2018 – Medical artificial intelligence (AI) company Bay Labs and Northwestern Medicine announced that the first patient has been enrolled in a first-of-its-kind study. The study will evaluate the use of Bay Labs’ EchoGPS cardiac ultrasound guidance software to enable certified medical assistants (CMAs) as medical professionals with no prior scanning experience to capture high-quality echocardiograms. The study will also evaluate the use of its EchoMD measurement and interpretation software suite to detect certain types of heart disease among patients 65 years and older undergoing routine physical examinations in primary care settings.

“Deep learning will have a profound impact on cardiac imaging in the future, and the ability to simplify acquisition will be a tremendous advance to bring echocardiograms to the point-of-care in primary care offices,” said Patrick M. McCarthy, M.D., chief of cardiac surgery at Northwestern Memorial Hospital, executive director, Northwestern Medicine Bluhm Cardiovascular Institute and principal investigator on the project.

“SHAPE: Seeing the Heart with AI Powered Echo” is the first study to evaluate AI-guided ultrasound acquisition by CMAs. SHAPE is a non-randomized study which will enroll approximately 1,200 patients at Northwestern Medicine sites, including Northwestern Medicine Central DuPage Hospital in Winfield, Ill., and Northwestern Medicine Regional Medical Group primary care clinics. The primary objective of the study is to determine whether CMAs can use the Bay Labs EchoGPS to obtain diagnostic-quality echocardiograms, and if those images reviewed by cardiologists with the assistance of the EchoMD software suite will enable detection of more patients with cardiac disease in a primary care setting compared to standard physical examination with an electrocardiogram (ECG).

The SHAPE study is a part of Bay Labs’ ongoing partnership with Northwestern Medicine to explore new ways to apply AI to clinical cardiovascular care and fits into Northwestern’s larger AI initiative, which focuses on harnessing the power of AI to advance the study and treatment of cardiovascular disease. The AI initiative is funded, in part, by a $25 million gift from the Bluhm Family Charitable Foundation, formed by Neil G. Bluhm, a prominent Chicago philanthropist and real estate developer. For more details on the SHAPE study, including enrollment information, please visit Clinicaltrials.gov identifier #NCT03705650.

Bay Labs’ EchoGPS is investigational software integrated into an ultrasound system. EchoGPS uses AI to aid in the acquisition of echocardiograms by providing non-specialist users real-time guidance to obtain cardiac views. The EchoMD software suite assists cardiologists in automated review of images captured. Bay Labs received U.S. Food and Drug Administration (FDA) clearance for its first release of EchoMD in June 2018, which included AutoEF software that fully automates clip selection and calculation of left ventricular ejection fraction (EF), the leading measurement of cardiac function.

For more information: www.baylabs.io

Related Content

A 3-D ultrasound system provides an effective, noninvasive way to estimate blood flow that retains its accuracy across different equipment, operators and facilities, according to a study published in the journal Radiology.

Volume flow as a function of color flow gain (at a single testing site). For each row the color flow c-plane and the computed volume flow are shown as a function of color flow gain. The c-plane is shown for four representative gain levels, whereas the computed volume flow is shown for 12–17 steps across the available gain settings. Flow was computed with (solid circles on the graphs) and without (hollow circles on the graphs) partial volume correction. Partial volume correction accounts for pixels that are only partially inside the lumen. Therefore, high gain (ie, blooming) does not result in overestimation of flow. Systems 1 and 2 converge to true flow after the lumen is filled with color pixel. System 3 is nearly constant regarding gain and underestimates the flow by approximately 17%. Shown are mean flow estimated from 20 volumes, and the error bars show standard deviation. Image courtesy of the journal Radiology

News | Ultrasound Imaging | July 01, 2020
July 1, 2020 — A 3-D ultrasound
R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

News | Magnetic Resonance Imaging (MRI) | July 01, 2020
July 1, 2020 — Researchers using magnetic...
Imaging Artificial Intelligence (AI) provider Qure.ai announced its first US FDA 510(k) clearance for its head CT scan product qER. The US Food and Drug Administration's decision covers four critical abnormalities identified by Qure.ai's emergency room product.
News | Artificial Intelligence | June 30, 2020
June 30, 2020 — Imaging Artificial Intelligence (AI) provider Qure.ai announced its first US FDA 510(k) clearance for
Cardiac MR can offer data above and beyond anatomical imaging, which is the main reason why this system was installed at Baylor Scott White Heart Hospital in Dallas. The system is a dedicated heart MRI scanner.

Cardiac MR can offer data above and beyond anatomical imaging, which is the main reason why this system was installed at Baylor Scott White Heart Hospital in Dallas. The system is a dedicated heart MRI scanner.

News | Pediatric Imaging | June 29, 2020
June 29, 2020 — A type of smart magnetic r...
Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosai

Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosaic pattern with a bronchocentric distribution to the GGO (white arrow, d) involving both central and peripheral lung parenchyma with pleural effusions (black small arrow, d). image courtesy of Radiological Society of North America

News | Coronavirus (COVID-19) | June 26, 2020
June 26, 2020 — In recent weeks, a multisystem hyperinflammatory condition has emerged in children in association wit
Universal digital operating system for surgery enables health tech companies and start-ups to accelerate, scale and grow

Stefan Vilsmeier, President and CEO of Brainlab Photo courtesy of Brainlab

News | Artificial Intelligence | June 26, 2020
June 26, 2020 — ...
Case abstraction study period was from 10 March to 7 April 2020. Follow-up of abstracted cases was until 7 May 2020.

Case abstraction study period was from 10 March to 7 April 2020. Follow-up of abstracted cases was until 7 May 2020. Courtesy of Nature Medicine

News | Coronavirus (COVID-19) | June 25, 2020
June 25, 2020 — The characterization of COVID-19