News | Radiopharmaceuticals and Tracers | April 28, 2017

Australian Team Finds New Method for Producing PET Radiotracers in Higher Radiochemical Yields

New method utilizes transition metal rhenium to eliminate the need for dry conditions and purification steps

Australian Team Finds New Method for Producing PET Radiotracers in Higher Radiochemical Yields

April 28, 2017 — Researchers at the Australian Nuclear Science and Technology Organisation (ANSTO) have led the development of a new method for producing positron emission tomography (PET) radiotracers. The discovery utilizes the transition metal rhenium to promote fluorine-18 radiolabelling under aqueous, low temperature conditions. The method circumvents the need for dry conditions, and purification steps, which saves time and gives PET radiotracers in very high yields. 

Fluorine-18, the most commonly used radioisotope in PET imaging, must be attached to vectors in order to diagnose disease. The best example is where fluorine-18 is attached to glucose in order to make [18F]FDG for cancer imaging.

This new method has the potential to improve production of PET radiotracers like FDG, but also facilitate development of new radiotracers by allowing previously challenging vectors to be radiolabelled in high yields under mild conditions.  

Because a radiotracer decays, radio-synthesis needs to be performed quickly, efficiently and in high yield, so there is enough radiotracer to scan all patients at a PET medical center.  

“Improving methods for incorporation of fluorine-18 has been a longstanding challenge for the radiotracer community. This research is the first example of a rhenium promoted radio-fluorination, an unprecedented, exciting discovery in the radiochemistry field,” said senior author Benjamin Fraser, M.D., Radiotracer Method and Organic Chemistry Task leader at ANSTO.

Fraser explained that a rhenium complex was selected because of its potential for development as a dual modality PET/optical imaging agent. PET allows diagnosis of tumor location and then optical luminescence guides surgical removal of the tumor.

“The choice of rhenium proved fortuitous for the incorporation of F-18 and was good example of ‘chance favoring the prepared mind’ as the result was not predicted but very significant,” said Fraser.

“It’s also important that the reaction can be done in water, as this simplifies subsequent formulation of the radiotracer in saline for injection into a patient in a clinical setting,” he added.

The study involved the use of microfluidic technologies that had several advantages for the investigation. Giancarlo Pascali, M.D., co-senior investigator on the project who is based at the Camperdown cyclotron facility, supervised the radiochemistry work under microfluidic radiolabelling conditions.

“Microfluidic technologies allowed us to optimize all the reaction parameters very quickly, such as temperature, time, solvent and additives. We can optimize a given radiolabelling reaction in only three days, which under normal conditions would take one month to complete.

Another benefit of microfluidics is that we work with only very small amounts of radioactivity,” said Fraser.

Fraser points out that at this stage the radiotracer has not been tested for use with PET. “The next step is working on conjugating the tracer to new biological vectors, but also applying the new rhenium method to established radiotracers. We can then also investigate its potential use as a dual modality probe,” he said.

A large team of researchers from the Human Health and the Radioisotopes and Radiotracers platform at ANSTO, Curtin University, The University of Sydney, Monash University and Western Sydney University contributed to the study, which has just been published in Chemistry – A European Journal.

Ph.D. student Mitchell Klenner, who received an Australian Institute of Nuclear Science and Engineering (AINSE) post graduate scholarship, has been invited to present the work at The International Symposium on Radiopharmaceutical Sciences in May 2017.

Klenner will receive the prestigious Wiley Award at the conference in recognition of the impact of the work. Recently he also presented the work at Innovations and Radiation Applications 2017 in Wollongong and received the industry-sponsored award for best student presentation.

Fraser said, “It is fantastic to see Mitchell get due recognition for his diligent, hard work. His passion and enthusiasm for research at ANSTO is inspiring.”

For more information: www.onlinelibrary.wiley.com

Related Content

Prof. Dr. Samer Ezziddin from Saarland University/Saarland University Hospital.

Prof. Dr. Samer Ezziddin from Saarland University/Saarland University Hospital. Photo courtesy of Thorsten Mohr/Saarland University

News | Prostate Cancer | November 28, 2019
November 28, 2019 — Reports of new cancer treatments
 Prostate cancer MRI
News | Clinical Trials | November 15, 2019
November 15, 2019 — Theragnostics, which is developing innovative radiopharm
Philips Medical System is recalling its older Forte Gamma Camera SPECT imaging systems due to the possibility of the detectors falling off of the unit onto the patient. The two gamma cameras can bee seen in this photo on either side of the patient bed. These can be rotated above the patient.

Philips Medical System is recalling its older Forte Gamma Camera SPECT imaging systems due to the possibility of the detectors falling off of the unit onto the patient. The two gamma cameras can be seen in this photo on either side of the patient bed. These can be rotated above the patient.

Feature | Nuclear Imaging | November 05, 2019 | Dave Fornell, Editor
November 5, 2019 — Philips Medical System is recalling the Forte Gamma Camera System due to the potential for the 660
 Phoenix’s fusion neutron generation technology.
News | Radiopharmaceuticals and Tracers | October 28, 2019
October 28, 2019 — Phoenix LLC and Shine Medical Technologies LLC, nuclear technology companies focused on near-term
GE Healthcare and Theragnostics Partnering on PSMA PET/CT Imaging Agent
News | Prostate Cancer | October 16, 2019
GE Healthcare and Theragnostics have entered into a global commercial partnership for a new prostate-specific membrane...
ASNC Announces Multisocietal Cardiac Amyloidosis Imaging Consensus
News | Cardiac Imaging | September 09, 2019
September 9, 2019 — The American Society of Nuclear Cardiology (ASNC) published a new expert consensus document along
A 3-D printed tungsten pre-clinical X-ray system collimator. 3D printed, additive manufacturing for medical imaging.

A 3-D printed tungsten pre-clinical X-ray system collimator. The tungsten alloy powder is printed into the form desired and is laser fused so it can be machined and finished. Previously, making collimators from Tungsten was labor intensive because it required working with sheets of the metal to create the collimator matrix. 

Feature | Medical 3-D Printing | September 04, 2019 | By Steve Jeffery
In ...