News | Prostate Cancer | October 24, 2020

Imaging agent fluciclovine invented at Emory/Winship

A study from Winship Cancer Institute of Emory University (Winship) has the potential to change how patients whose prostate cancer recurs after prostatectomy are treated. The study will be featured in both the plenary session and press program of the American Society for Radiation Oncology (ASTRO) Annual Meeting on Monday, October 26.

October 24, 2020 — A study from Winship Cancer Institute of Emory University (Winship) has the potential to change how patients whose prostate cancer recurs after prostatectomy are treated. The study will be featured in both the plenary session and press program of the American Society for Radiation Oncology (ASTRO) Annual Meeting on Monday, October 26.

The Emory Molecular Prostate Imaging for Radiotherapy Enhancement, or EMPIRE-1 trial (NCT01666808), is the first randomized trial of men with prostate cancer with recurring cancer to show that treatment based on advanced molecular imaging can improve disease-free survival rates. The molecular imaging agent used in the study, the radiotracer fluciclovine (18F) PET, was invented and developed at Emory and Winship.

The phase II/III trial was led by Winship radiation oncologist and prostate cancer specialist Ashesh B. Jani, M.D., MSEE, FASTRO, and Winship nuclear radiology specialist David M. Schuster, M.D., FACR. The trial enrolled 165 patients whose cancer recurred after having undergone prostatectomies. One group received radiation therapy based on conventional imaging. The other group received treatment that was finalized based on imaging with the fluciclovine PET radiotracer. Those whose treatment was adjusted according to the results of the advanced molecular imaging showed an improvement in the cancer control end point.

"At three years, the group getting treatment guided by PET fluciclovine had a 12 percent better cancer control rate, and this persisted at four years as well, with a 24% improvement," said Jani. "We think the improvement was seen because the novel PET allowed for better selection of patients for radiation, better treatment decisions, and better radiation target design."

The study, "Initial Report of a Randomized Trial Comparing Conventional- vs Conventional plus Fluciclovine (18F) PET/CT Imaging-Guided Post-Prostatectomy Radiotherapy for Prostate Cancer," is one of only three studies featured in the ASTRO Plenary session, which highlights abstracts deemed to have the highest merit and greatest impact on radiation oncology research and practice.

"We knew that diagnostic performance of this PET radiotracer was better than conventional imaging. We also knew it changes management. But did it change management in the right direction? This study has allowed us to take it one step further and determine if using this imaging influences outcomes for the better. And it does," said Schuster.

The study used a type of PET known as fluciclovine (fluorine-18, or 18F) which was invented by a multidisciplinary team at Emory and is now commercialized by Blue Earth Diagnostics.

Fluciclovine was originally developed by Mark M. Goodman, Ph.D., Winship researcher and professor of radiology and imaging sciences at Emory University School of Medicine, and colleague Timothy Shoup, Ph.D., currently at Massachusetts General Hospital. In 1999, Goodman, Shoup, and Winship neurosurgeon Jeffrey J. Olson, M.D., published a study on the use of fluciclovine for brain tumor imaging.

Over a decade ago, researchers decided to explore if fluciclovine could also work for prostate cancer because of its low native urinary excretion. Jani and Schuster commenced a clinical trial in 2012 to determine if fluciclovine could be used to guide radiotherapy decisions and treatment volumes post-prostatectomy.

The technology was licensed to Blue Earth Diagnostics in 2014, and in 2016 the U.S. Food and Drug Administration approved the use of fluciclovine to diagnose men with recurrent prostate cancer with elevated blood levels of prostate-specific antigen after previous treatment. It is the first FDA-approved fluorinated PET radiotracer (trade name Axumin) for prostate cancer staging.

Funded by a $2.2 million grant from the National Institutes of Health, Jani and Schuster began the EMPIRE-1 trial in 2012 to further establish the role of advanced molecular imaging with fluciclovine in post-prostatectomy decision-making and treatment volumes. Jani and Schuster say the work behind this study represents the best of team science.

"The invention and development of this imaging technology speaks to the strength of collaborative science and breadth of expertise at Winship," said Winship Executive Director Walter J. Curran, Jr., M.D. "This study would not have been possible without Winship's comprehensive cancer center infrastructure."

Jani and Schuster are leading another NIH-funded ($3.7 million) trial, EMPIRE-2, to investigate a newer type of advanced molecular imaging, PSMA or prostate specific membrane antigen PET. The new radiotracer targets a receptor on the surface of prostate cancer cells. Investigators hope to discover whether this newer type of PET scan could be even more effective than fluciclovine in improving cancer control for prostate cancer patients with recurring cancer.

For more information: winshipcancer.emory.edu

Related Content

News | Ultrasound Women's Health

October 14, 2021 — In a first-in-world clinical trial, researchers at Sunnybrook Health Sciences Centre in Toronto ...

Time October 14, 2021
arrow
News | Lung Imaging

October 11, 2021 — According to ARRS’ American Journal of Roentgenology (AJR), percutaneous image-guided microwave and ...

Time October 11, 2021
arrow
News | Quality Assurance (QA)

October 11, 2021 — To maintain safety in radiation therapy (RT), every machine performance and patient delivery ...

Time October 11, 2021
arrow
News | Women's Health

October 8, 2021 — An analysis of nearly 200,000 patients who received mammograms between 2006 and 2015 across three U.S ...

Time October 08, 2021
arrow
News | Radiation Therapy

October 7, 2021 — NANOBIOTIX, a late-stage clinical biotechnology company pioneering physics-based approaches to expand ...

Time October 07, 2021
arrow
News | Radiation Therapy

October 7, 2021 — ViewRay, Inc. announced that the company has received acceptance from the FDA on their recent ...

Time October 07, 2021
arrow
Feature | Cardiac Imaging

October 6, 2021 – A new study published in Radiology: Cardiothoracic Imaging on cardiac imaging trends over a decade ...

Time October 06, 2021
arrow
News | Women's Health

October 5, 2021 — A promising radionuclide treatment may offer new therapeutic options for breast cancer patients ...

Time October 05, 2021
arrow
Feature | Radiation Therapy | By Dave Fornell

To maintain safety in radiation therapy (RT), every machine performance and patient delivery measurement must be as ...

Time October 05, 2021
arrow
Feature | Radiation Therapy

September 28, 2021 — New research from Washington University School of Medicine in St. Louis suggests that radiation ...

Time September 28, 2021
arrow
Subscribe Now