News | Digital Radiography (DR) | January 23, 2019

Artificial Intelligence Shows Potential for Triaging Chest X-rays

Use of deep learning and natural language processing reduces time to review of critical findings from 11.2 to 2.7 days

 Artificial Intelligence Shows Potential for Triaging Chest X-rays

January 23, 2019 — An artificial intelligence (AI) system can interpret and prioritize abnormal chest X-rays with critical findings, according to a study appearing in the journal Radiology.1 This could potentially reduce the backlog of exams and bringing urgently needed care to patients more quickly.

Chest X-rays account for 40 percent of all diagnostic imaging worldwide. The number of exams can create significant backlogs at healthcare facilities. In the U.K. there are an estimated 330,000 X-rays at any given time that have been waiting more than 30 days for a report.

"Currently there are no systematic and automated ways to triage chest X-rays and bring those with critical and urgent findings to the top of the reporting pile," said study co-author Giovanni Montana, Ph.D., formerly of King's College London in London and currently at the University of Warwick in Coventry, England.

Deep learning (DL), a type of AI capable of being trained to recognize subtle patterns in medical images, has been proposed as an automated means to reduce this backlog and identify exams that merit immediate attention, particularly in publicly-funded healthcare systems.

For the study, Montana and colleagues used 470,388 adult chest X-rays to develop an AI system that could identify key findings. The images had been stripped of any identifying information to protect patient privacy. The radiologic reports were pre-processed using natural language processing (NLP), an algorithm of the AI system that extracts labels from written text. For each X-ray, the researchers' in-house system required a list of labels indicating which specific abnormalities were visible on the image.

"The NLP goes well beyond pattern matching," Montana said. "It uses AI techniques to infer the structure of each written sentence; for instance, it identifies the presence of clinical findings and body locations and their relationships. The development of the NLP system for labeling chest X-rays at scale was a critical milestone in our study."

The NLP analyzed the radiologic report to prioritize each image as critical, urgent, non-urgent or normal. An AI system for computer vision was then trained using labeled X-ray images to predict the clinical priority from appearances only. The researchers tested the system's performance for prioritization in a simulation using an independent set of 15,887 images.

The AI system distinguished abnormal from normal chest X-rays with high accuracy. Simulations showed that critical findings received an expert radiologist opinion in 2.7 days, on average, with the AI approach — significantly sooner than the 11.2-day average for actual practice.

"The initial results reported here are exciting as they demonstrate that an AI system can be successfully trained using a very large database of routinely acquired radiologic data," Montana said. "With further clinical validation, this technology is expected to reduce a radiologist's workload by a significant amount by detecting all the normal exams so more time can be spent on those requiring more attention."

The researchers plan to expand their research to a much larger sample size and deploy more complex algorithms for better performance. Future research goals include a multi-center study to prospectively assess the performance of the triaging software.

"A major milestone for this research will consist in the automated generation of sentences describing the radiologic abnormalities seen in the images," Montana said. "This seems an achievable objective given the current AI technology."

For more information: www.pubs.rsna.org/journal/radiology

Reference

1. Annarumma M., Withey S.J., Bakewell R.J., et al. Automated Triaging of Adult Chest Radiographs with Deep Artificial Neural Networks. Radiology, Jan. 22, 2019. https://doi.org/10.1148/radiol.2018180921

Related Content

The Caption Guidance software uses artificial intelligence to guide users to get optimal cardiac ultrasound images in a point of care ultrasound (POCUS) setting.

The Caption Guidance software uses artificial intelligence to guide users to get optimal cardiac ultrasound images in a point of care ultrasound (POCUS) setting.

News | Artificial Intelligence | February 13, 2020
February 13, 2020 — The U.S.
Varian announced it has received FDA 510(k) clearance for its Ethos therapy, an Adaptive Intelligence solution. Ethos therapy is an artificial intelligence (AI)-driven holistic solution that provides an opportunity to transform cancer care.
News | Image Guided Radiation Therapy (IGRT) | February 11, 2020
February 11, 2020 — Varian announced it has received FDA 510(k) c
PaxeraHealth enterprise imaging, PACS, VNA solutions
News | Enterprise Imaging | February 11, 2020
February 11, 2020 — Enterprise Imaging developer PaxeraHealth
Mammograms of a 49-year-old woman with invasive lobular carcinoma on the right-side breast

Mammograms of a 49-year-old woman with invasive lobular carcinoma on the right-side breast. A small mass with micro-calcifications on the right-side breast was detected correctly by AI with an abnormality score of 96%. This case was recalled by 7 out of 14 radiologists (4 breast radiologists and 3 general radiologists) initially (without AI) and all 14 radiologists recalled this case correctly with the assistance of AI.

News | Artificial Intelligence | February 11, 2020
February 11, 2020 — A new study, published in...
aycan completed the install of a second aycan xray-print solution at Inspira Health in New Jersey
News | X-Ray | February 10, 2020
February 10, 2020 — aycan completed the install of a second...
Carestream mobile Xray
News | Digital Radiography (DR) | February 08, 2020
February 8, 2020 — Carestream Health was awarded 37 new paten
An example of artificial intelligence (AI) being developed by Hitachi to automatically review and identify nodules on lung CT scans. This is part of a suite of AI apps Hitachi is developing. This example was being shown as a work in progress at RSNA 2019.

An example of artificial intelligence (AI) being developed by Hitachi to automatically review and identify nodules on lung CT scans. This is part of a suite of AI apps Hitachi is developing. This example was being shown as a work in progress at RSNA 2019. Photo by Dave Fornell.

Feature | Artificial Intelligence | February 07, 2020 | Sanjay Parekh, Ph.D. 
February 7, 2020 – At the 2019 Radiological Society...
Sponsored Content | Videos | Artificial Intelligence | February 07, 2020
At RSNA19, GE Healthcare introduced its...
Accuray TomoTherapy total body irradiation
News | Radiation Therapy | February 07, 2020
February 7, 2020 — Accuray Incorporated announced that two new studies demonstrate the benefits of the ...
Sponsored Content | Videos | Artificial Intelligence | February 06, 2020
ProFound AI is an FDA-cleared artificial intelligence (AI) system for reading 3-D breast tomosynthesis images.