News | Digital Radiography (DR) | January 23, 2019

Artificial Intelligence Shows Potential for Triaging Chest X-rays

Use of deep learning and natural language processing reduces time to review of critical findings from 11.2 to 2.7 days

 Artificial Intelligence Shows Potential for Triaging Chest X-rays

January 23, 2019 — An artificial intelligence (AI) system can interpret and prioritize abnormal chest X-rays with critical findings, according to a study appearing in the journal Radiology.1 This could potentially reduce the backlog of exams and bringing urgently needed care to patients more quickly.

Chest X-rays account for 40 percent of all diagnostic imaging worldwide. The number of exams can create significant backlogs at healthcare facilities. In the U.K. there are an estimated 330,000 X-rays at any given time that have been waiting more than 30 days for a report.

"Currently there are no systematic and automated ways to triage chest X-rays and bring those with critical and urgent findings to the top of the reporting pile," said study co-author Giovanni Montana, Ph.D., formerly of King's College London in London and currently at the University of Warwick in Coventry, England.

Deep learning (DL), a type of AI capable of being trained to recognize subtle patterns in medical images, has been proposed as an automated means to reduce this backlog and identify exams that merit immediate attention, particularly in publicly-funded healthcare systems.

For the study, Montana and colleagues used 470,388 adult chest X-rays to develop an AI system that could identify key findings. The images had been stripped of any identifying information to protect patient privacy. The radiologic reports were pre-processed using natural language processing (NLP), an algorithm of the AI system that extracts labels from written text. For each X-ray, the researchers' in-house system required a list of labels indicating which specific abnormalities were visible on the image.

"The NLP goes well beyond pattern matching," Montana said. "It uses AI techniques to infer the structure of each written sentence; for instance, it identifies the presence of clinical findings and body locations and their relationships. The development of the NLP system for labeling chest X-rays at scale was a critical milestone in our study."

The NLP analyzed the radiologic report to prioritize each image as critical, urgent, non-urgent or normal. An AI system for computer vision was then trained using labeled X-ray images to predict the clinical priority from appearances only. The researchers tested the system's performance for prioritization in a simulation using an independent set of 15,887 images.

The AI system distinguished abnormal from normal chest X-rays with high accuracy. Simulations showed that critical findings received an expert radiologist opinion in 2.7 days, on average, with the AI approach — significantly sooner than the 11.2-day average for actual practice.

"The initial results reported here are exciting as they demonstrate that an AI system can be successfully trained using a very large database of routinely acquired radiologic data," Montana said. "With further clinical validation, this technology is expected to reduce a radiologist's workload by a significant amount by detecting all the normal exams so more time can be spent on those requiring more attention."

The researchers plan to expand their research to a much larger sample size and deploy more complex algorithms for better performance. Future research goals include a multi-center study to prospectively assess the performance of the triaging software.

"A major milestone for this research will consist in the automated generation of sentences describing the radiologic abnormalities seen in the images," Montana said. "This seems an achievable objective given the current AI technology."

For more information: www.pubs.rsna.org/journal/radiology

Reference

1. Annarumma M., Withey S.J., Bakewell R.J., et al. Automated Triaging of Adult Chest Radiographs with Deep Artificial Neural Networks. Radiology, Jan. 22, 2019. https://doi.org/10.1148/radiol.2018180921

Related Content

The interior of the German air force Airbus A-310 Medivac in Cologne, Germany, before its departure to Bergamo, Italy, March 28 to being ferrying COVID-19 patients to Germany for treatment to aid the Italians, whose healthcare system has been overwhelmed by the rapid spread of the coronavirus pandemic. Bundeswehr Photo by Kevin Schrief.

The interior of the German air force Airbus A-310 Medivac in Cologne, Germany, before its departure to Bergamo, Italy, March 28 to being ferrying COVID-19 patients to Germany for treatment to aid the Italians, whose healthcare system has been overwhelmed by the rapid spread of the coronavirus pandemic. Bundeswehr Photo by Kevin Schrief. Find more images from the COVID-19 pandemic.

 

Feature | Coronavirus (COVID-19) | April 08, 2020 | By Melinda Taschetta-Millane and Dave Fornell
In an effort to keep the imaging field updated on the latest information being released on coronavirus (COVID-19), th
A recent study earlier this year in the journal Nature, which included researchers from Google Health London, demonstrated that artificial intelligence (AI) technology outperformed radiologists in diagnosing breast cancer on mammograms
Feature | Breast Imaging | April 06, 2020 | By Samir Parikh
A recent study earlier this year in the journal Nature,
Varian received FDA clearance for its Ethos therapy in February 2020. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Varian received FDA clearance for its Ethos therapy in February 2020, shown here displayed for the first time at ASTRO 2019. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Feature | Treatment Planning | April 03, 2020 | Dave Fornell, Editor
The traditional treatment planning process takes days to create an optimized radiation therapy delivery plan, but new
An example of Philips’ TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal.

An example of Philips’ TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal. Photo by Dave Fornell

Feature | Radiology Imaging | April 02, 2020 | By Katie Caron
A new year — and decade — offers the opportunity to reflect on the advancements and challenges of years gone by and p
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus

Getty Images

Feature | Coronavirus (COVID-19) | April 02, 2020 | Jilan Liu and HIMSS Greater China Team
Information technologies have played a pivotal role in China’s response to the novel coronavirus...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 the company is now offering a suite of AI solutions Vuno Med-LungQuant and Vuno Med-Chest X-ray for COVID-19, encompassing both lung X-ray and computed tomography (CT) modalities respectively all at once
News | Artificial Intelligence | April 02, 2020
April 2, 2020 — In the face of the COVID-19 pand
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 New studies use SIRD model to forecast COVID-19 spread; examine patient CT scans to correlate clinical features with mortality

Fig 1. A sample scoring on CT images of a 63-year-old woman from mortality group demonstrated a total score of 63. It was calculated as: for upper zone (A), 3 (consolidation) × 3 (50–75% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) ×1 (< 25% distribution) × 2 (both right and left lungs); for middle zone (B), 3 (consolidation) × 2 (25–50% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) × 2 (25–50% distribution) × 2 (both right and left lungs); for lower zone (C), 3 (consolidation) × (2 (25–50% distribution of the right lung) + 3 (50–75% distribution of the left lung)) + 2 (ground glass opacity) × (2 (25–50% distribution of the right lung) + 1 (< 25% distribution of the left lung)) Yuan et al, 2020 (CC BY 4.0)

News | Coronavirus (COVID-19) | April 01, 2020
April 1, 2020 — A new study, ...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Company emphasizes faster, more advanced CTs, making imaging easier for COVID-19 patients
News | Computed Tomography (CT) | April 01, 2020
April 1, 2020 — United Imaging, a global leader in advanc