News | Digital Radiography (DR) | January 23, 2019

Use of deep learning and natural language processing reduces time to review of critical findings from 11.2 to 2.7 days

 Artificial Intelligence Shows Potential for Triaging Chest X-rays

January 23, 2019 — An artificial intelligence (AI) system can interpret and prioritize abnormal chest X-rays with critical findings, according to a study appearing in the journal Radiology.1 This could potentially reduce the backlog of exams and bringing urgently needed care to patients more quickly.

Chest X-rays account for 40 percent of all diagnostic imaging worldwide. The number of exams can create significant backlogs at healthcare facilities. In the U.K. there are an estimated 330,000 X-rays at any given time that have been waiting more than 30 days for a report.

"Currently there are no systematic and automated ways to triage chest X-rays and bring those with critical and urgent findings to the top of the reporting pile," said study co-author Giovanni Montana, Ph.D., formerly of King's College London in London and currently at the University of Warwick in Coventry, England.

Deep learning (DL), a type of AI capable of being trained to recognize subtle patterns in medical images, has been proposed as an automated means to reduce this backlog and identify exams that merit immediate attention, particularly in publicly-funded healthcare systems.

For the study, Montana and colleagues used 470,388 adult chest X-rays to develop an AI system that could identify key findings. The images had been stripped of any identifying information to protect patient privacy. The radiologic reports were pre-processed using natural language processing (NLP), an algorithm of the AI system that extracts labels from written text. For each X-ray, the researchers' in-house system required a list of labels indicating which specific abnormalities were visible on the image.

"The NLP goes well beyond pattern matching," Montana said. "It uses AI techniques to infer the structure of each written sentence; for instance, it identifies the presence of clinical findings and body locations and their relationships. The development of the NLP system for labeling chest X-rays at scale was a critical milestone in our study."

The NLP analyzed the radiologic report to prioritize each image as critical, urgent, non-urgent or normal. An AI system for computer vision was then trained using labeled X-ray images to predict the clinical priority from appearances only. The researchers tested the system's performance for prioritization in a simulation using an independent set of 15,887 images.

The AI system distinguished abnormal from normal chest X-rays with high accuracy. Simulations showed that critical findings received an expert radiologist opinion in 2.7 days, on average, with the AI approach — significantly sooner than the 11.2-day average for actual practice.

"The initial results reported here are exciting as they demonstrate that an AI system can be successfully trained using a very large database of routinely acquired radiologic data," Montana said. "With further clinical validation, this technology is expected to reduce a radiologist's workload by a significant amount by detecting all the normal exams so more time can be spent on those requiring more attention."

The researchers plan to expand their research to a much larger sample size and deploy more complex algorithms for better performance. Future research goals include a multi-center study to prospectively assess the performance of the triaging software.

"A major milestone for this research will consist in the automated generation of sentences describing the radiologic abnormalities seen in the images," Montana said. "This seems an achievable objective given the current AI technology."

For more information: www.pubs.rsna.org/journal/radiology

Reference

1. Annarumma M., Withey S.J., Bakewell R.J., et al. Automated Triaging of Adult Chest Radiographs with Deep Artificial Neural Networks. Radiology, Jan. 22, 2019. https://doi.org/10.1148/radiol.2018180921


Related Content

News | Point-of-Care Ultrasound (POCUS)

Jan. 22, 2026 — Qure.ai has received a grant from the Gates Foundation to develop a large open-source multi-modal ...

Time January 23, 2026
arrow
News | Radiology Imaging

Jan. 21, 2026 — Cathpax, a spin-off of the Lemer Pax group that designs, develops and commercializes team-wide, full ...

Time January 22, 2026
arrow
News | RSNA

Jan. 22, 2026 — The nomination deadline for the 2026 RSNA Rising Star Award is approaching. The Rising Star Award is ...

Time January 22, 2026
arrow
News | Magnetic Resonance Imaging (MRI)

Jan. 20, 2026 — Hyperfine, the developer of the first FDA-cleared AI-powered portable MRI system for the brain — the ...

Time January 20, 2026
arrow
News | Mammography

Jan. 16, 2026 — Vega Imaging Informatics has announced the successful curation of the world’s largest digital breast ...

Time January 19, 2026
arrow
News | Radiation Therapy

Jan. 16, 2026 — Elekta has announced that its Elekta Evo* CT-Linac has received 510(k) clearance from the U.S. Food and ...

Time January 16, 2026
arrow
News | X-Ray

Dec. 31, 2025 – Carestream Health, Inc. has completed the separation of the company into two geographically focused ...

Time January 08, 2026
arrow
News | Stroke

Dec. 18, 2025 — Brainomix, a provider of AI-powered imaging biomarkers for stroke and lung fibrosis, has announced ...

Time December 24, 2025
arrow
News | Information Technology

Dec. 16, 2025 — McCrae Tech has launched the world’s first health AI orchestrator called Orchestral. It is a health ...

Time December 23, 2025
arrow
News | RSNA 2025

Dec. 12, 2025 — At RSNA 2025, United Imaging Intelligence (UII), the AI-focused subsidiary of United Imaging Group ...

Time December 17, 2025
arrow
Subscribe Now