News | Prostate Cancer | July 28, 2020

Artificial Intelligence Identifies Prostate Cancer with Near-perfect Accuracy

Prostate biopsy with cancer probability (blue is low, red is high). This case was originally diagnosed as benign but changed to cancer upon further review. The AI accurately detected cancer in this tricky case. Image courtesy of Ibex Medical Analytics

Prostate biopsy with cancer probability (blue is low, red is high). This case was originally diagnosed as benign but changed to cancer upon further review. The AI accurately detected cancer in this tricky case. Image courtesy of Ibex Medical Analytics

July 28, 2020 — A study published in The Lancet Digital Health by UPMC and University of Pittsburgh researchers demonstrates the highest accuracy to date in recognizing and characterizing prostate cancer using an artificial intelligence (AI) program. The AI technology used in the study is from of Ibex Medical Analytics.

"Humans are good at recognizing anomalies, but they have their own biases or past experience," said senior author Rajiv Dhir, M.D., M.B.A., chief pathologist and vice chair of pathology at UPMC Shadyside and professor of biomedical informatics at Pitt. "Machines are detached from the whole story. There's definitely an element of standardizing care."

To train the AI to recognize prostate cancer, Dhir and his colleagues provided images from more than a million parts of stained tissue slides taken from patient biopsies. Each image was labeled by expert pathologists to teach the AI how to discriminate between healthy and abnormal tissue. The algorithm was then tested on a separate set of 1,600 slides taken from 100 consecutive patients seen at UPMC for suspected prostate cancer.

During testing, the AI demonstrated 98% sensitivity and 97% specificity at detecting prostate cancer -- significantly higher than previously reported for algorithms working from tissue slides.

Also, this is the first algorithm to extend beyond cancer detection, reporting high performance for tumor grading, sizing and invasion of the surrounding nerves. These all are clinically important features required as part of the pathology report.

AI also flagged six slides that were not noted by the expert pathologists.

But Dhir explained that this doesn't necessarily mean that the machine is superior to humans. For example, in the course of evaluating these cases, the pathologist could have simply seen enough evidence of malignancy elsewhere in that patient's samples to recommend treatment. For less experienced pathologists, though, the algorithm could act as a failsafe to catch cases that might otherwise be missed.

"Algorithms like this are especially useful in lesions that are atypical," Dhir said. "A nonspecialized person may not be able to make the correct assessment. That's a major advantage of this kind of system."

While these results are promising, Dhir cautions that new algorithms will have to be trained to detect different types of cancer. The pathology markers aren't universal across all tissue types. But he didn't see why that couldn't be done to adapt this technology to work with breast cancer, for example.

Additional authors on the study include Liron Pantanowitz, M.B.B.Ch., of the University of Michigan; Gabriela Quiroga-Garza, M.D., of UPMC; Lilach Bien, Ronen Heled, Daphna Laifenfeld, Ph.D., Chaim Linhart, Judith Sandbank, M.D., Manuela Vecsler, of Ibex Medical Analytics; Anat Albrecht-Shach, M.D., of Shamir Medical Center; Varda Shalev, M.D., M.P.A., of Maccabbi Healthcare Services; and Pamela Michelow, M.S., and Scott Hazelhurst, Ph.D., of the University of the Witwatersrand.

Funding for this study was provided by Ibex, which also created this commercially available algorithm. Pantanowitz, Shalev and Albrecht-Shach report fees paid by Ibex, and Pantanowitz and Shalev serve on the medical advisory board. Bien and Linhart are authors on pending patents US 62/743,559 and US 62/981,925. Ibex had no influence over the design of the study or the interpretation of the results.

For more information: www.medschool.pitt.edu

Related Content

Results of Journal of the American College of Surgeons study should reassure breast cancer patients who experienced surgical postponements due to COVID-19 pandemic

Association between Time to Operation and Pathological Stage in DCIS & ER+ Breast Cancer. Courtesy of American College of Surgeons

News | Women's Health | August 07, 2020
August 7, 2020 — A new br...

An oncologist practices social distancing while talking to a cancer patient. Image courtesy of University of Michigan Rogel Cancer Center

News | Coronavirus (COVID-19) | August 07, 2020
August 7, 2020 — When COVID-19 struck, health ca
As part of an international collaboration, researchers from Aarhus University and University of Leicester have succeeded in developing a dynamic 3-D CT scanning method that shows what happens inside the body during simulated heart massage

A look inside cardiopulmonary resuscitation: A 4-D computed tomography model of simulated closed chest compression. A proof of concept. Courtesy of Kasper Hansen/Jonathan Bjerg Moeller/Aarhus University

News | Cardiac Imaging | August 07, 2020
August 7, 2020 — Rapid first aid during...
Global radiotherapy market revenue is set to expand from $7,222.4 million in 2019 to $17,194.4 million by 2030, at an 8.4% CAGR between 2020 and 2030, the key factor driving the market growth is the increasing number of cancer cases, according to the report published by P&S Intelligence.

Image courtesy of Elekta

News | Radiation Therapy | August 06, 2020
August 6, 2020 — Global ...
Collaboration will include data sharing, R&D and an upgrade of RadNet’s fleet of mammography systems to Hologic’s state-of-the-art imaging technology
News | Breast Imaging | August 06, 2020
August 6, 2020 — RadNet, Inc., a national leader in providing hig
Ghost imaging approach could enable detailed movies of the heart with low-dose X-rays

Researchers developed a high-resolution X-ray imaging technique based on ghost imaging that can capture the motion of rapidly moving objects. They used it to create a movie of a blade rotating at 100,000 frames per second. Image courtesy of Sharon Shwartz, Bar-Ilan University

News | X-Ray | August 06, 2020
August 6, 2020 — Researche...
According to the new market research report "Radiation Dose Management Market by Products & Services (Standalone Solutions, Integrated Solutions, Services), Modality (Computed Tomography, Nuclear Medicine), Application (Oncology, Cardiology, Orthopedic), End User (Hospitals) - Global Forecast to 2025", published by MarketsandMarkets, the radiation dose management market is projected to reach USD 422.65 million by 2025 from USD 220.22 million in 2020, at a CAGR of 13.9%.

Courtesy of MarketsandMarkets Research

News | Radiation Dose Management | August 03, 2020
August 3, 2020 — According to the new market research report "...
Siemens AG is continuing to rigorously execute its Vision 2020+ strategy and therefore expressly welcomes Siemens Healthineers AG’s acquisition of a 100 percent stake in Varian Medical Systems, Inc., a U.S. company active in the area of cancer research and therapy.

Getty Images

News | Radiology Business | August 03, 2020
August 3, 2020 — Siemens AG is continuing to rigorously execute its Vision 2020+ strategy and therefore expressly wel