News | Artificial Intelligence | January 04, 2019

Artificial Intelligence Advances Threaten Privacy of Health Data

Study finds current laws and regulations do not safeguard individuals' confidential health information

Artificial Intelligence Advances Threaten Privacy of Health Data

January 4, 2019 — Advances in artificial intelligence (AI) have created new threats to the privacy of people's health data, a new University of California, Berkeley, a new study shows.

Led by University of California Berkeley engineer Anil Aswani, the study suggests current laws and regulations are nowhere near sufficient to keep an individual's health status private in the face of AI development. The research was published Dec. 21 in the JAMA Network Open journal.

The findings show that by using artificial intelligence, it is possible to identify individuals by learning daily patterns in step data, such as that collected by activity trackers, smartwatches and smartphones, and correlating it to demographic data.

The mining of two years' worth of data covering more than 15,000 Americans led to the conclusion that the privacy standards associated with 1996's HIPAA (Health Insurance Portability and Accountability Act) legislation need to be revisited and reworked.

"We wanted to use NHANES (the National Health and Nutrition Examination Survey) to look at privacy questions because this data is representative of the diverse population in the U.S.," said Aswani. "The results point out a major problem. If you strip all the identifying information, it doesn't protect you as much as you'd think. Someone else can come back and put it all back together if they have the right kind of information."

"In principle, you could imagine Facebook gathering step data from the app on your smartphone, then buying healthcare data from another company and matching the two," he added. "Now they would have healthcare data that's matched to names, and they could either start selling advertising based on that or they could sell the data to others."

According to Aswani, the problem isn't with the devices, but with how the information the devices capture can be misused and potentially sold on the open market.

"I'm not saying we should abandon these devices," he said. "But we need to be very careful about how we are using this data. We need to protect the information. If we can do that, it's a net positive."

Though the study specifically looked at step data, the results suggest a broader threat to the privacy of health data.

"HIPAA regulations make your healthcare private, but they don't cover as much as you think," Aswani said. "Many groups, like tech companies, are not covered by HIPAA, and only very specific pieces of information are not allowed to be shared by current HIPAA rules. There are companies buying health data. It's supposed to be anonymous data, but their whole business model is to find a way to attach names to this data and sell it."

Aswani said advances in AI make it easier for companies to gain access to health data, the temptation for companies to use it in illegal or unethical ways will increase. Employers, mortgage lenders, credit card companies and others could potentially use AI to discriminate based on pregnancy or disability status, for instance.

"Ideally, what I'd like to see from this are new regulations or rules that protect health data," he said. "But there is actually a big push to even weaken the regulations right now. For instance, the rule-making group for HIPAA has requested comments on increasing data sharing. The risk is that if people are not aware of what's happening, the rules we have will be weakened. And the fact is the risks of us losing control of our privacy when it comes to health care are actually increasing and not decreasing."

For more information: www.jamanetwork.com/journals/jamanetworkopen

Reference

1. Na L., Yang C., Lo C., et al. Feasibility of Reidentifying Individuals in Large National Physical Activity Data Sets From Which Protected Health Information Has Been Removed With Use of Machine Learning. JAMA Network Open, Dec. 21, 2018. doi:10.1001/jamanetworkopen.2018.6040

Related Content

The Caption Guidance software uses artificial intelligence to guide users to get optimal cardiac ultrasound images in a point of care ultrasound (POCUS) setting.

The Caption Guidance software uses artificial intelligence to guide users to get optimal cardiac ultrasound images in a point of care ultrasound (POCUS) setting.

News | Artificial Intelligence | February 13, 2020
February 13, 2020 — The U.S.
The Candelis ImageGrid Plus PACS Server is an ultra-high-performance platform that can support high volume healthcare environments of 1,000 plus modalities
News | PACS | February 12, 2020
February 12, 2020 — The Candelis ImageGrid Plus...
Varian announced it has received FDA 510(k) clearance for its Ethos therapy, an Adaptive Intelligence solution. Ethos therapy is an artificial intelligence (AI)-driven holistic solution that provides an opportunity to transform cancer care.
News | Image Guided Radiation Therapy (IGRT) | February 11, 2020
February 11, 2020 — Varian announced it has received FDA 510(k) c
Mammograms of a 49-year-old woman with invasive lobular carcinoma on the right-side breast

Mammograms of a 49-year-old woman with invasive lobular carcinoma on the right-side breast. A small mass with micro-calcifications on the right-side breast was detected correctly by AI with an abnormality score of 96%. This case was recalled by 7 out of 14 radiologists (4 breast radiologists and 3 general radiologists) initially (without AI) and all 14 radiologists recalled this case correctly with the assistance of AI.

News | Artificial Intelligence | February 11, 2020
February 11, 2020 — A new study, published in...
PaxeraHealth enterprise imaging, PACS, VNA solutions
News | Enterprise Imaging | February 11, 2020
February 11, 2020 — Enterprise Imaging developer PaxeraHealth
An example of artificial intelligence (AI) being developed by Hitachi to automatically review and identify nodules on lung CT scans. This is part of a suite of AI apps Hitachi is developing. This example was being shown as a work in progress at RSNA 2019.

An example of artificial intelligence (AI) being developed by Hitachi to automatically review and identify nodules on lung CT scans. This is part of a suite of AI apps Hitachi is developing. This example was being shown as a work in progress at RSNA 2019. Photo by Dave Fornell.

Feature | Artificial Intelligence | February 07, 2020 | Sanjay Parekh, Ph.D. 
February 7, 2020 – At the 2019 Radiological Society...
Sponsored Content | Videos | Artificial Intelligence | February 07, 2020
At RSNA19, GE Healthcare introduced its...
Sponsored Content | Videos | Artificial Intelligence | February 06, 2020
ProFound AI is an FDA-cleared artificial intelligence (AI) system for reading 3-D breast tomosynthesis images.
Infervision’s deep learning medical imaging platform is helping screen patients for the coronavirus in China. It acts as second pair of eyes to identify multiple diseases from one set of chest scans. The artificial intelligence (AI) can provide a complete view of the nodule, including volume and density.

Infervision’s deep learning medical imaging platform is helping screen patients for the coronavirus in China. It acts as second pair of eyes to identify multiple diseases from one set of chest scans. The artificial intelligence (AI) can provide a complete view of the nodule, including volume and density.

News | Artificial Intelligence | February 04, 2020
February 4, 2020 — Since January 2020, the...