News | Artificial Intelligence | January 04, 2019

Artificial Intelligence Advances Threaten Privacy of Health Data

Study finds current laws and regulations do not safeguard individuals' confidential health information

Artificial Intelligence Advances Threaten Privacy of Health Data

January 4, 2019 — Advances in artificial intelligence (AI) have created new threats to the privacy of people's health data, a new University of California, Berkeley, a new study shows.

Led by University of California Berkeley engineer Anil Aswani, the study suggests current laws and regulations are nowhere near sufficient to keep an individual's health status private in the face of AI development. The research was published Dec. 21 in the JAMA Network Open journal.

The findings show that by using artificial intelligence, it is possible to identify individuals by learning daily patterns in step data, such as that collected by activity trackers, smartwatches and smartphones, and correlating it to demographic data.

The mining of two years' worth of data covering more than 15,000 Americans led to the conclusion that the privacy standards associated with 1996's HIPAA (Health Insurance Portability and Accountability Act) legislation need to be revisited and reworked.

"We wanted to use NHANES (the National Health and Nutrition Examination Survey) to look at privacy questions because this data is representative of the diverse population in the U.S.," said Aswani. "The results point out a major problem. If you strip all the identifying information, it doesn't protect you as much as you'd think. Someone else can come back and put it all back together if they have the right kind of information."

"In principle, you could imagine Facebook gathering step data from the app on your smartphone, then buying healthcare data from another company and matching the two," he added. "Now they would have healthcare data that's matched to names, and they could either start selling advertising based on that or they could sell the data to others."

According to Aswani, the problem isn't with the devices, but with how the information the devices capture can be misused and potentially sold on the open market.

"I'm not saying we should abandon these devices," he said. "But we need to be very careful about how we are using this data. We need to protect the information. If we can do that, it's a net positive."

Though the study specifically looked at step data, the results suggest a broader threat to the privacy of health data.

"HIPAA regulations make your healthcare private, but they don't cover as much as you think," Aswani said. "Many groups, like tech companies, are not covered by HIPAA, and only very specific pieces of information are not allowed to be shared by current HIPAA rules. There are companies buying health data. It's supposed to be anonymous data, but their whole business model is to find a way to attach names to this data and sell it."

Aswani said advances in AI make it easier for companies to gain access to health data, the temptation for companies to use it in illegal or unethical ways will increase. Employers, mortgage lenders, credit card companies and others could potentially use AI to discriminate based on pregnancy or disability status, for instance.

"Ideally, what I'd like to see from this are new regulations or rules that protect health data," he said. "But there is actually a big push to even weaken the regulations right now. For instance, the rule-making group for HIPAA has requested comments on increasing data sharing. The risk is that if people are not aware of what's happening, the rules we have will be weakened. And the fact is the risks of us losing control of our privacy when it comes to health care are actually increasing and not decreasing."

For more information: www.jamanetwork.com/journals/jamanetworkopen

Reference

1. Na L., Yang C., Lo C., et al. Feasibility of Reidentifying Individuals in Large National Physical Activity Data Sets From Which Protected Health Information Has Been Removed With Use of Machine Learning. JAMA Network Open, Dec. 21, 2018. doi:10.1001/jamanetworkopen.2018.6040

Related Content

Partners HealthCare Chooses Visage 7 for Enterprise Imaging
News | Enterprise Imaging | January 18, 2019
Visage Imaging Inc. announced the signing of Partners HealthCare, the largest health system in Massachusetts, for...
Novel Technique May Significantly Reduce Breast Biopsies
News | Breast Biopsy Systems | January 17, 2019
A novel technique that uses mammography to determine the biological tissue composition of a tumor could help reduce...
Seamless Interoperability – Fact or Fiction? This webinar will show how Nemours Children’s Health System adoption of ScImage’s PICOM365 Enterprise PACS  improved workflow. The product will be highlighted at HIMSS 2019.
Sponsored Content | Webinar | PACS | January 17, 2019
This ScImage-sponsored ITN/DAIC webinar will be held at 2 p.m. Eastern time, Wednesday, Feb. 6, 2019.
NewYork-Presbyterian Hospital Partners With Philips for Health IT and Clinical Informatics
News | Enterprise Imaging | January 16, 2019
Philips announced that NewYork-Presbyterian Hospital has chosen to implement the company’s IntelliSpace Enterprise...
Artificial Intelligence Used in Clinical Practice to Measure Breast Density
News | Artificial Intelligence | January 15, 2019
An artificial intelligence (AI) algorithm measures breast density at the level of an experienced mammographer,...
Sponsored Content | Videos | Artificial Intelligence | January 15, 2019
ITN Contributing Editor Greg Freiherr offers an overview of...
Machine Learning Uncovers New Insights Into Human Brain Through fMRI
News | Neuro Imaging | January 11, 2019
An interdisciplinary research team led by scientists from the National University of Singapore (NUS) has successfully...
Videos | Interventional Radiology | January 11, 2019
Julius Chapiro, M.D., research faculty member and an...
AI Approach Outperformed Human Experts in Identifying Cervical Precancer
News | Digital Pathology | January 10, 2019
January 10, 2019 — A research team led by investigators from the National Institutes of Health and Global Good has de
Artificial intelligence, also called deep learning and machine learning, was the hottest topic at the 2018 Radiological Society of North America (RSNA)) meeting.

Artificial intelligence was the hottest topic at the 2018 Radiological Society of North America (RSNA)) meeting, which included a large area with its own presentation therater set asside for AI vendors.

Feature | Artificial Intelligence | January 10, 2019 | Dave Fornell, Editor
Hands down, the hottest topic in radiology the past two years has been the implementation of...