News | Artificial Intelligence | December 18, 2019

A new study published in Radiology suggests that a type of AI can outperform existing breast cancer screening models

Patient inclusion flowchart shows selection of women in the training and validation samples used for deep neural network development, as well as in the test sample (current study sample). Exclusions are detailed in the footnote. PACS = picture archiving and communication system. Image courtesy of Radiological Society of North America.

Patient inclusion flowchart shows selection of women in the training and validation samples used for deep neural network development, as well as in the test sample (current study sample). Exclusions are detailed in the footnote. PACS = picture archiving and communication system. Image courtesy of Radiological Society of North America.


December 17, 2019 — A sophisticated type of artificial intelligence (AI) can outperform existing models at predicting which women are at future risk of breast cancer, according to a study published in the journal Radiology.

Most existing breast cancer screening programs are based on mammography at similar time intervals — typically, annually or every two years — for all women. This “one size fits all” approach is not optimized for cancer detection on an individual level and may hamper the effectiveness of screening programs.

“Risk prediction is an important building block of an individually adapted screening policy,” said study lead author Karin Dembrower, M.D., breast radiologist and Ph.D. candidate from the Karolinska Institute in Stockholm, Sweden. “Effective risk prediction can improve attendance and confidence in screening programs.”

High breast density, or a greater amount of glandular and connective tissue compared to fat, is considered a risk factor for cancer. While density may be incorporated into risk assessment, current prediction models may fail to fully take advantage of all the rich information found in mammograms. This information has the potential to identify women who would benefit from additional screening with magnetic resonance imaging (MRI).

Dembrower and colleagues developed a risk model that relies on a deep neural network, a type of AI that can extract vast amounts of information from mammographic images. It has inherent advantages over other methods like visual assessment of mammographic density by the radiologist that may not be able to capture all risk-relevant information in the image. The new model was developed and trained on mammograms from cases diagnosed between 2008 and 2012 and then studied on more than 2,000 women ages 40 to 74 who had undergone mammography in the Karolinska University Hospital system. Of the 2,283 women in the study, 278 were later diagnosed with breast cancer.

The deep neural network showed a higher risk association for breast cancer compared to the best mammographic density model. The false negative rate — the rate at which women who were not categorized as high-risk were later diagnosed with breast cancer — was lower for the deep neural network than for the best mammographic density model.

“The deep neural network overall was better than density-based models,” Dembrower said. “And it did not have the same bias as the density-based model. Its predictive accuracy was not negatively affected by more aggressive cancer subtypes.”

The study findings support a future role for AI in breast cancer risk assessment.

“We are not reporting mammographic density currently,” Dembrower said. “In the introduction of individually adapted screening, we use deep learning networks trained to predict cancer rather than taking the indirect route that density offers.”

As an additional benefit, the AI approach can continually be improved with exposure to more high-quality data sets.

“Our deep learning experts at the Royal Institute of Technology in Stockholm are working on an update to the model,” Dembrower said. “After that, we aim to test the model clinically next year by offering MRI to the women who stand to benefit the most.”

For more information: www.rsna.org

 

Related content:

Hologic Announces FDA Approval of 3DQuorum Imaging Technology, Powered by Genius AI

Study Finds iCAD's ProFound AI Improves Efficiency and Accuracy in Breast Cancer Detection


Related Content

News | Ultrasound Imaging

June 3, 2025 — In a collaborative study between the Departments of Radiology at the Children’s Hospital of Philadelphia ...

Time June 04, 2025
arrow
News | Breast Imaging

June 2, 2025 — Clairity, Inc., a digital health innovator advancing AI-driven healthcare solutions, has received U.S ...

Time June 02, 2025
arrow
News | PET Imaging

May 30, 2025 — GE HealthCare recently announced that the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) ...

Time May 30, 2025
arrow
News | Magnetic Resonance Imaging (MRI)

Hyperfine, Inc., producer of the world’s first FDA-cleared AI-powered portable MRI system for the brain — the Swoop ...

Time May 29, 2025
arrow
News | Imaging Software Development

May 27, 2025 — DeepLook Medical, a company advancing medical imaging through visual enhancement technology, recently ...

Time May 28, 2025
arrow
News | Imaging Software Development

May 20, 2025 – Intelerad, a provider of medical imaging software solutions, recently announced its prime partnership ...

Time May 21, 2025
arrow
News | Teleradiology

May 21, 2025 — Konica Minolta Healthcare Americas, Inc and NewVue have announced the introduction of Exa Teleradiology ...

Time May 21, 2025
arrow
News | Breast Imaging

May 13, 2025 — In one of the larger studies of its kind, researchers have identified six breast texture patterns that ...

Time May 16, 2025
arrow
News | Computed Tomography (CT)

May 15, 2025 — GE HealthCare has launched CleaRecon DL, technology powered by a deep-learning algorithm, to improve the ...

Time May 15, 2025
arrow
News | Radiation Oncology

May 2, 2025 — GE HealthCare has announced an intended expansion of its radiation oncology portfolio as well as the ...

Time May 03, 2025
arrow
Subscribe Now