News | Artificial Intelligence | December 18, 2019

A new study published in Radiology suggests that a type of AI can outperform existing breast cancer screening models

Patient inclusion flowchart shows selection of women in the training and validation samples used for deep neural network development, as well as in the test sample (current study sample). Exclusions are detailed in the footnote. PACS = picture archiving and communication system. Image courtesy of Radiological Society of North America.

Patient inclusion flowchart shows selection of women in the training and validation samples used for deep neural network development, as well as in the test sample (current study sample). Exclusions are detailed in the footnote. PACS = picture archiving and communication system. Image courtesy of Radiological Society of North America.


December 17, 2019 — A sophisticated type of artificial intelligence (AI) can outperform existing models at predicting which women are at future risk of breast cancer, according to a study published in the journal Radiology.

Most existing breast cancer screening programs are based on mammography at similar time intervals — typically, annually or every two years — for all women. This “one size fits all” approach is not optimized for cancer detection on an individual level and may hamper the effectiveness of screening programs.

“Risk prediction is an important building block of an individually adapted screening policy,” said study lead author Karin Dembrower, M.D., breast radiologist and Ph.D. candidate from the Karolinska Institute in Stockholm, Sweden. “Effective risk prediction can improve attendance and confidence in screening programs.”

High breast density, or a greater amount of glandular and connective tissue compared to fat, is considered a risk factor for cancer. While density may be incorporated into risk assessment, current prediction models may fail to fully take advantage of all the rich information found in mammograms. This information has the potential to identify women who would benefit from additional screening with magnetic resonance imaging (MRI).

Dembrower and colleagues developed a risk model that relies on a deep neural network, a type of AI that can extract vast amounts of information from mammographic images. It has inherent advantages over other methods like visual assessment of mammographic density by the radiologist that may not be able to capture all risk-relevant information in the image. The new model was developed and trained on mammograms from cases diagnosed between 2008 and 2012 and then studied on more than 2,000 women ages 40 to 74 who had undergone mammography in the Karolinska University Hospital system. Of the 2,283 women in the study, 278 were later diagnosed with breast cancer.

The deep neural network showed a higher risk association for breast cancer compared to the best mammographic density model. The false negative rate — the rate at which women who were not categorized as high-risk were later diagnosed with breast cancer — was lower for the deep neural network than for the best mammographic density model.

“The deep neural network overall was better than density-based models,” Dembrower said. “And it did not have the same bias as the density-based model. Its predictive accuracy was not negatively affected by more aggressive cancer subtypes.”

The study findings support a future role for AI in breast cancer risk assessment.

“We are not reporting mammographic density currently,” Dembrower said. “In the introduction of individually adapted screening, we use deep learning networks trained to predict cancer rather than taking the indirect route that density offers.”

As an additional benefit, the AI approach can continually be improved with exposure to more high-quality data sets.

“Our deep learning experts at the Royal Institute of Technology in Stockholm are working on an update to the model,” Dembrower said. “After that, we aim to test the model clinically next year by offering MRI to the women who stand to benefit the most.”

For more information: www.rsna.org

 

Related content:

Hologic Announces FDA Approval of 3DQuorum Imaging Technology, Powered by Genius AI

Study Finds iCAD's ProFound AI Improves Efficiency and Accuracy in Breast Cancer Detection

Related Content

News | Digital Pathology

October 18, 2021 — Histolix, a leading developer of direct-to-digital read pathology solutions, announced it has ...

Time October 18, 2021
arrow
News | Radiographic Fluoroscopy (RF)

October 18, 2021 — Long Island Jewish Valley Stream of Valley Stream, N.Y., recently became the first healthcare ...

Time October 18, 2021
arrow
News | Ultrasound Imaging

October 15, 2021 — NeuroLogica Corp., the U.S. healthcare subsidiary of Samsung, introduces the V8; a high-end ...

Time October 15, 2021
arrow
News | Ultrasound Women's Health

October 14, 2021 — In a first-in-world clinical trial, researchers at Sunnybrook Health Sciences Centre in Toronto ...

Time October 14, 2021
arrow
News | Breast Imaging

October 14, 2021 — Delphinus Medical Technologies, Inc. announced that the U.S. Food and Drug Administration (FDA) has ...

Time October 14, 2021
arrow
News | Women's Health

October 11, 2021 — Electrical engineering professor Magda El-Shenawee’s effort to develop a more accurate and less ...

Time October 11, 2021
arrow
News | Artificial Intelligence

October 11, 2021 — The Icahn School of Medicine at Mount Sinai has launched a new department dedicated to advancing ...

Time October 11, 2021
arrow
News | Women's Health

October 8, 2021 — An analysis of nearly 200,000 patients who received mammograms between 2006 and 2015 across three U.S ...

Time October 08, 2021
arrow
News | Enterprise Imaging

October 8, 2021 — HealthLevel, Inc., innovator of Foundations, a business operations analytics platform for healthcare ...

Time October 08, 2021
arrow
News | MRI Breast

October 7, 2021 — An automated system that uses artificial intelligence (AI) can quickly and accurately sift through ...

Time October 07, 2021
arrow
Subscribe Now