Feature | Breast Imaging | October 28, 2019

Study Finds iCAD's ProFound AI Improves Efficiency and Accuracy in Breast Cancer Detection

Study finds use of AI was associated with improved accuracy and shorter reading times

CAD's ProFound AI Improves Efficiency and Accuracy in Breast Cancer Detection

October 28, 2019 — Artificial intelligence (AI) helps improve the efficiency and accuracy of an advanced imaging technology used to screen for breast cancer, according to a new study published in the journal Radiology: Artificial Intelligence.

Digital breast tomosynthesis (DBT) is an advanced method for cancer detection in which an X-ray arm sweeps over the breast, taking multiple images in a matter of seconds.

Research has shown that DBT improves cancer detection and reduces false-positive recalls compared to screening with digital mammography (DM) alone. However, the DBT exam can take almost twice as long to interpret as DM due to the time it takes for the radiologist to scroll through all the images. This increased time is likely to be more consequential as DBT increasingly becomes the standard-of-care for mammographic imaging.

For the study, researchers developed a deep learning system, a type of AI that can mine vast amounts of data to find subtle patterns beyond human recognition. They trained the AI system on large DBT data sets to identify suspicious findings in the DBT images.

After developing and training the system, the researchers tested its performance by having 24 radiologists, including 13 breast subspecialists, each read 260 DBT examinations with and without AI assistance. The examinations included 65 cancer cases.

Use of AI was associated with improved accuracy and shorter reading times. Sensitivity increased from 77 percent without AI to 85 percent with it. Specificity increased from 62.7 percent without AI to 69.6 percent with it. The recall rate for non-cancers, or the rate at which women were called back for follow-up examinations based on benign findings, decreased from 38 percent without AI to just 30.9 percent with it. On average, reading time decreased from just over 64 seconds without AI to only 30.4 seconds with it.

"Overall, readers were able to increase their sensitivity by 8 percent, lower their recall rate by 7 percent and cut their reading time in half when using AI concurrently while reading DBT cases compared to reading without using AI," said study lead author Emily F. Conant, M.D., professor and chief of breast imaging from the Department of Radiology at the Perelman School of Medicine at the University of Pennsylvania in Philadelphia.

Also showing improvement was the area under the receiver operating characteristic curve (AUC), a graphing variable that combines sensitivity and specificity into a single measure for a better representation of overall radiologist performance. Radiologist performance, measured by mean AUC, increased from 0.795 without AI to 0.852 with AI.

"We know that DBT imaging increases cancer detection and lowers recall rate when added to 2-D mammography, and even further improvement in these key metrics is clinically very important," Conant said. "And, since adding DBT to the 2-D mammogram approximately doubles radiologist reading time, the concurrent use of AI with DBT increases cancer detection and may bring reading times back to about the time it takes to read DM-alone exams."

The researchers expect the deep learning approach to improve as it is exposed to larger and larger data sets, making its potential impact on patient care even more significant.

"The results of this study suggest that both improved efficiency and accuracy could be achieved in clinical practice using an effective AI system," Conant said.

For more information: www.pubs.rsna.org/journal/radiology

Related content: 

Breast Tomosynthesis Increases Cancer Detection Over Digital Mammography

 

Related Content

A 3-D ultrasound system provides an effective, noninvasive way to estimate blood flow that retains its accuracy across different equipment, operators and facilities, according to a study published in the journal Radiology.

Volume flow as a function of color flow gain (at a single testing site). For each row the color flow c-plane and the computed volume flow are shown as a function of color flow gain. The c-plane is shown for four representative gain levels, whereas the computed volume flow is shown for 12–17 steps across the available gain settings. Flow was computed with (solid circles on the graphs) and without (hollow circles on the graphs) partial volume correction. Partial volume correction accounts for pixels that are only partially inside the lumen. Therefore, high gain (ie, blooming) does not result in overestimation of flow. Systems 1 and 2 converge to true flow after the lumen is filled with color pixel. System 3 is nearly constant regarding gain and underestimates the flow by approximately 17%. Shown are mean flow estimated from 20 volumes, and the error bars show standard deviation. Image courtesy of the journal Radiology

News | Ultrasound Imaging | July 01, 2020
July 1, 2020 — A 3-D ultrasound
R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

News | Magnetic Resonance Imaging (MRI) | July 01, 2020
July 1, 2020 — Researchers using magnetic...
Imaging Artificial Intelligence (AI) provider Qure.ai announced its first US FDA 510(k) clearance for its head CT scan product qER. The US Food and Drug Administration's decision covers four critical abnormalities identified by Qure.ai's emergency room product.
News | Artificial Intelligence | June 30, 2020
June 30, 2020 — Imaging Artificial Intelligence (AI) provider Qure.ai announced its first US FDA 510(k) clearance for
In new QuickPoLL survey on imaging during the pandemic, responses were tallied from around 170 radiology administrators and business managers, who are part of an imagePRO panel created by The MarkeTech Group (TMTG), regarding the effects of COVID-19 on their business. TMTG is a research firm specializing in the medical device, healthcare and pharmaceutical industries.
Feature | Coronavirus (COVID-19) | June 30, 2020 | By Melinda Taschetta-Millane
Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosai

Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosaic pattern with a bronchocentric distribution to the GGO (white arrow, d) involving both central and peripheral lung parenchyma with pleural effusions (black small arrow, d). image courtesy of Radiological Society of North America

News | Coronavirus (COVID-19) | June 26, 2020
June 26, 2020 — In recent weeks, a multisystem hyperinflammatory condition has emerged in children in association wit
Universal digital operating system for surgery enables health tech companies and start-ups to accelerate, scale and grow

Stefan Vilsmeier, President and CEO of Brainlab Photo courtesy of Brainlab

News | Artificial Intelligence | June 26, 2020
June 26, 2020 — ...
n support of Mayo Clinic’s digital health and practice transformation initiatives, the Mayo Clinic Department of Laboratory Medicine and Pathology has initiated an enterprise-wide digital pathology implementation of the Sectra digital slide review and image storage and management system to enable digital pathology. 
News | Enterprise Imaging | June 26, 2020
June 26, 2020 —  In support of Mayo Clinic’s digital health