News | Digital Pathology | January 10, 2019

Artificial intelligence algorithm could revolutionize cervical cancer screening, especially in low-resource settings

AI Approach Outperformed Human Experts in Identifying Cervical Precancer

January 10, 2019 — A research team led by investigators from the National Institutes of Health and Global Good has developed a computer algorithm that can analyze digital images of a woman’s cervix and accurately identify precancerous changes that require medical attention. This artificial intelligence (AI) approach, called automated visual evaluation, has the potential to revolutionize cervical cancer screening, particularly in low-resource settings.

To develop the method, researchers used comprehensive datasets to "train" a deep, or machine, learning algorithm to recognize patterns in complex visual inputs, such as medical images. The approach was created collaboratively by investigators at the National Cancer Institute (NCI) and Global Good, a fund at Intellectual Ventures, and the findings were confirmed independently by experts at the National Library of Medicine (NLM). The results appeared in the Journal of the National Cancer Institute on Jan. 10, 2019.1 NCI and NLM are parts of NIH.

"Our findings show that a deep learning algorithm can use images collected during routine cervical cancer screening to identify precancerous changes that, if left untreated, may develop into cancer," said Mark Schiffman, M.D., MPH, of NCI’s Division of Cancer Epidemiology and Genetics, and senior author of the study. "In fact, the computer analysis of the images was better at identifying precancer than a human expert reviewer of Pap tests under the microscope (cytology)."

The new method has the potential to be of particular value in low-resource settings. Healthcare workers in such settings currently use a screening method called visual inspection with acetic acid (VIA). In this approach, a health worker applies dilute acetic acid to the cervix and inspects the cervix with the naked eye, looking for "aceto whitening," which indicates possible disease. Because of its convenience and low cost, VIA is widely used where more advanced screening methods are not available. However, it is known to be inaccurate and needs improvement.

Automated visual evaluation is similarly easy to perform. Health workers can use a cell phone or similar camera device for cervical screening and treatment during a single visit. In addition, this approach can be performed with minimal training, making it ideal for countries with limited healthcare resources, where cervical cancer is a leading cause of illness and death among women.

To create the algorithm, the research team used more than 60,000 cervical images from an NCI archive of photos collected during a cervical cancer screening study that was carried out in Costa Rica in the 1990s. More than 9,400 women participated in that population study, with follow-up that lasted up to 18 years. Because of the prospective nature of the study, the researchers gained nearly complete information on which cervical changes became precancers and which did not. The photos were digitized and then used to train a deep learning algorithm so that it could distinguish cervical conditions requiring treatment from those not requiring treatment.

"When this algorithm is combined with advances in HPV vaccination, emerging HPV detection technologies, and improvements in treatment, it is conceivable that cervical cancer could be brought under control, even in low-resource settings," said Maurizio Vecchione, executive vice president of Global Good.

The researchers plan to further train the algorithm on a sample of representative images of cervical precancers and normal cervical tissue from women in communities around the world, using a variety of cameras and other imaging options. This step is necessary because of subtle variations in the appearance of the cervix among women in different geographic regions. The ultimate goal of the project is to create the best possible algorithm for common, open use.

For more information: www.academic.oup.com/jnci

Reference

1. Hu L., Bell D., Antani S., et al. An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening. Journal of the National Cancer Institute, Jan. 10, 2019. https://doi.org/10.1093/jnci/djy225


Related Content

Feature | Radiology Imaging

View the September/October digital edition of Imaging Technology News (ITN), including links to videos, comparison ...

Time September 29, 2022
arrow
News | Enterprise Imaging

September 29, 2022 — Konica Minolta Healthcare Americas, Inc. announced the implementation of Exa PACS/RIS/Billing and ...

Time September 29, 2022
arrow
News | Enterprise Imaging

September 27, 2022 — Intelerad Medical Systems, a leading global provider of enterprise imaging solutions, announced its ...

Time September 27, 2022
arrow
News | Digital Pathology

September 22, 2022 — By partnering with Hamamatsu, Infinitt can offer an enhanced integration with NanoZoomers, enabling ...

Time September 22, 2022
arrow
Feature | Information Technology | By Jef Williams

I took my family to Blockbuster this weekend to pick out a movie, hoping there would be something good left to rent ...

Time September 21, 2022
arrow
Feature | Breast Imaging | By Christine Book

Findings from a clinical trial that used artificial intelligence (AI) in an effort to reduce false positives on breast ...

Time September 21, 2022
arrow
Feature | Digital Pathology | By Michael Valante

With digital pathology now being adopted by institutions around the globe, it is not surprising that we are seeing a ...

Time September 21, 2022
arrow
Feature | Artificial Intelligence | By Christine Book

What follows is the second part of our coverage of the “Radiology: Artificial Intelligence Fireside Chat” conducted at ...

Time September 16, 2022
arrow
Feature | PACS | By Melinda Taschetta-Millane

According to a new report, “Global Picture Archiving and Communication System (PACS) Market Report and Forecast 2022 ...

Time September 16, 2022
arrow
Sponsored Content | Whitepapers | Information Technology

Large-scale mergers and acquisitions are causing increased strain on IT teams responsible for consolidating and managing ...

Time September 15, 2022
arrow
Subscribe Now