News | Magnetic Resonance Imaging (MRI) | March 14, 2016

Advanced MRI Technology Tracks Cells in the Body

New fluorine-based tracer, enhanced by iron, has potential to clearly, quickly track cells and molecules

MRI, fluorine tracer agent, UC San Diego, Eric Aherns

March 14, 2016 — Writing in the March 14 online issue of Nature Materials, researchers at University of California, San Diego School of Medicine describe a new, highly sensitive chemical probe that tags cells for detection by magnetic resonance imaging (MRI).

The need to non-invasively “see” and track cells in living persons is indisputable – a boon to both research and development of future therapies. Emerging treatments using stem cells and immune cells are poised to most benefit from cell tracking, which would visualize their behavior in the body after delivery. Clinicians require such data to speed these cell treatments to patients.

A research team led by senior author Eric T. Ahrens, Ph.D., professor of radiology, and Roger Tsien, Ph.D., professor of pharmacology, chemistry and biochemistry (whose work with fluorescent proteins earned him a share of the 2008 Nobel Prize in chemistry) have synthesized a new cell labeling probe using fluorine-19, the stable isotope of the element fluorine. Agents are formulated as a “nanoemulsion” that contains microscopic droplets of an inert fluorine-based agent that is taken up by cells of interest. The fluorine agent in cells is directly detected by MRI, enabling one to observe movement of cell populations.

“Fluorine-19 tracer agents are an emerging approach that produces positive signal hot-spot images with no background signal because there’s virtually no fluorine concentration in tissues,” said Ahrens. “We have made a major leap in sensitivity. We have figured out how to dissolve and encapsulate metals inside the fluorine-based droplets. The net effect is to greatly amp up the MRI signal.”

Ahrens, Tsien and Alex Kislukhin, a postdoctoral scholar in their labs, increased the sensitivity of the fluorine MRI agent by creating a new imaging medium that combines highly fluorinated nanoemulsions with the magnetic properties of metals – a technique that increases the visibility of fluorine by MRI. Unexpectedly and serendipitously, they also discovered that iron is particularly effective at enhancing the fluorine MRI signal.

“The chemist’s iron hand has moved the field of biomedical imaging forward,” said Ahrens. “To the best of our knowledge, iron has never been considered as an enhancer of 19F MRI signals, yet our analysis shows that iron is fundamentally magnetically superior to all other metal ions for enhancing fluorine MRI.”

Added Tsien: “It’s a wonderful coincidence that fluorine MRI benefits most from iron, which is biologically friendlier and cheaper than gadolinium, still the favorite for proton MRI.”

While more research remains to be done, Ahrens said 19F MRI aided by iron represents a significant advance in tracking cells in many emerging therapeutic areas, such as immunotherapy, stem cells and treating inflammation.

Co-authors include Hongyan Xu, Stephen R. Adams and Kazim H. Narsinh, all at UC San Diego. Tsien is also a member of the Howard Hughes Medical Institute at UC San Diego.

Funding for this research came, in part, from the National Institutes of Health (grants T32-CA121938, R01-EB017271), Radiological Society of North America and the California Institute for Regenerative Medicine.

For more information: www.nature.com/nmat

Related Content

MRI and Computer Modeling Reveals How Wrist Bones Move

Using fast MRI, UC Davis researchers scanned left and right wrists of men and women and used the data to build computer models of the movement of wrist bones. The data could help understand wrist injuries such as carpal tunnel syndrome. Image courtesy of Brent Foster and Abhijit Chaudhari, UC Davis.

News | Magnetic Resonance Imaging (MRI) | February 19, 2019
In a just-published Journal of Biomechanics article, the researchers proved a longtime assumption about individuals'...
Amazon Comprehend Medical Brings Medical Language Processing to Healthcare
News | Artificial Intelligence | February 15, 2019
Amazon recently announced Amazon Comprehend Medical, a new HIPAA-eligible machine learning service that allows...
Siemens Healthineers Demonstrates Artificial Intelligence, Healthcare Digitalization at HIMSS19
News | Artificial Intelligence | February 13, 2019
February 13, 2019 — At the 2019 Healthcare Information and Management Systems Society (HIMSS) global conference and e
Fujifilm Launches Latest Synapse 3D Version at HIMSS 2019

The new Intravoxel Incoherent Motion (IVIM) MR application in Synapse 3D

Technology | Advanced Visualization | February 08, 2019
Fujifilm Medical Systems U.S.A. will debut the latest version of its Synapse 3D solution at the Healthcare Information...
Study Assesses Risk of MRI Exams for Patients With Tattoos
News | Magnetic Resonance Imaging (MRI) | February 01, 2019
A new European study concluded that magnetic resonance imaging (MRI) exams pose little risk for people with tattoos,...
Stereotactic Radiotherapy Improves Long-Term Survival in Stage-IV Cancers
News | Stereotactic Body Radiation Therapy (SBRT) | January 31, 2019
The first report from a phase II, multi-center clinical trial indicates stereotactic radiation can extend long-term...
ImaginAb Enrolls First Patient in Phase II PET Agent Clinical Trial
News | Radiopharmaceuticals and Tracers | January 30, 2019
ImaginAb Inc. announced the enrollment of the first patient in the Phase II clinical trial of the company’s CD8+ T Cell...
Artificial Intelligence Research Receives RSNA Margulis Award
News | Digital Radiography (DR) | January 28, 2019
The Radiological Society of North America (RSNA) presented its seventh Alexander R. Margulis Award for Scientific...