News | Artificial Intelligence | April 08, 2019

ACR and NVIDIA Launch ACR AI-LAB

Platform powered by NVIDIA Clara AI toolkit gives radiologists ability to develop and deploy artificial intelligence at their own institutions

ACR and NVIDIA Launch ACR AI-LAB

April 8, 2019 — NVIDIA and the American College of Radiology (ACR) announced a collaboration to enable thousands of radiologists nationwide to create and use artificial intelligence (AI) for diagnostic radiology in their own facilities, using their own data, to meet their own clinical needs.

Following a successful three-month pilot program by both parties, ACR is integrating the NVIDIA Clara AI toolkit into the newly announced ACR Data Science Institute ACR AI-LAB. ACR AI-LAB is a free software platform that will be made available to more than 38,000 ACR members and other radiology professionals to build, share, locally adapt and validate AI algorithms, while also ensuring patient data stays protected at the local institution.

The NVIDIA Clara AI toolkit is a key part of the NVIDIA Clara developer platform, which is designed to enable software-defined medical instruments and intelligent workflows. A platform to create data and algorithm pipelines, NVIDIA Clara consists of libraries for data and image processing, AI model processing and visualization. For AI, the toolkit includes libraries for data annotation, model training, model adaptation, model federation and large-scale deployment.

Making the vision of the ACR AI-LAB a reality requires the collaboration of the entire ecosystem, including industry leaders GE Healthcare, Nuance and NVIDIA, along with a vast network of healthcare startups and leading research institutes. NVIDIA Clara powers GE Healthcare’s Edison AI platform and the Nuance AI Marketplace, both of which are supporting the AI-LAB and are key solutions for the deployment of AI within the radiology workflow.

“This collaboration marks a significant milestone in an extraordinary ACR Data Science Institute project, helping enable the launch of the ACR AI-LAB, giving radiologists in any practice environment an opportunity to become involved in AI development at their own institutions, using their own patient data to meet their own clinical needs,” said Bibb Allen Jr., M.D., FACR, and chief medical officer of the Data Science Institute at the American College of Radiology.

An initial pilot with the Ohio State University (OSU) and the Massachusetts General Hospital and Brigham and Women’s Hospital’s Center for Clinical Data Science (CCDS) helped NVIDIA and ACR define the assets and pathways necessary to enable facilities to work together and with industry to refine AI algorithms without sharing potentially sensitive patient data. Bringing an AI model to the patient data, instead of patient data to the model, can help increase diversity in algorithm training, facilitate validation of the algorithms and enable radiologists to learn the steps needed to adapt algorithms to their institutions’ clinical needs.

Using the NVIDIA Clara AI toolkit, OSU was able to quickly import a pre-trained model developed by CCDS. This model was customized to local variables and successfully labeled OSU data for further testing and improvement of the algorithm, all of which took place behind their own firewall. It resulted in a highly accurate and enhanced cardiac computed tomography angiography (CCTA) model, and the shared approach reduced algorithm training, validation and testing times by days.

“This software will offer radiologists, without computer programming experience, the ability to build and improve AI algorithms without the need to share their data,” said Keith Dreyer, D.O., Ph.D., chief data science officer at Partners Healthcare and associate professor of radiology at Harvard Medical School. “Algorithms typically work best within the sites where they were trained, but those limited training sets are not always representative of the population at large. Training AI models on data from diverse sites helps ensure resiliency while reducing algorithm bias, resulting in improved inference across broader populations.”

“Enabling a network of artificial intelligence between hospitals will create more robust algorithms, greater efficiencies and likely lead to better patient outcomes,” said Richard White, M.D., chair of the department of radiology and medical imaging informatics at the Ohio State University Wexner Medical Center. “This will give us access to high-quality algorithms that will help us accelerate deep learning and machine learning in healthcare.”

The architecture used in the pilot program, powered by the NVIDIA Clara AI toolkit, enables data aggregation, image annotation, image pre-processing and transformation, algorithm transfer and local computing for algorithm improvement, all of which are necessary to achieve the ultimate goal of the democratization of AI. The ACR AI-LAB platform will also support any future U.S. Food and Drug Administration (FDA) initiatives that use real-world data for local adaptive learning for algorithm improvement and monitoring of continuously learning algorithms.

Read the article “FDA Proposes New Review Framework for AI-based Medical Devices”

The initial version of ACR AI-LAB will be shown at the 2019 ACR Annual Meeting, May 18-22 in Washington, D.C. Attendees will be able to explore and experiment with the AI tools necessary to modify and refine AI models. Soon after, ACR plans to provide online access and sample data from publicly available patient datasets.

The ACR AI-LAB builds upon the ACR TRIAD (Transfer of Images and Data), a platform that already connects thousands of radiology practices for ACR research, accreditation and registry program. Through the ACR AI-LAB, these same radiologists will now be provided with user-friendly computational tools that will help them learn about annotating datasets and training AI models as well as sample the AI tools that can be used to train and modify existing AI algorithms.

For more information: www.acr.org, www.nvidia.com

Related Content

Developed by medical AI company Lunit, Software detects breast cancer with 97% accuracy; Study in Lancet Digital Health shows that Lunit INSIGHT MMG-aided radiologists showed an increase in sensitivity

Lunit INSIGHT MMG

News | Artificial Intelligence | June 02, 2020
June 2, 2020 — Lunit announced that its artificia...
AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire)

AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire).

News | Artificial Intelligence | May 29, 2020
May 29, 2020 — GE Healthcare announced U.S.
Largest case series (n=30) to date yields high frequency (77%) of negative chest CT findings among pediatric patients (10 months-18 years) with COVID-19, while also suggesting common findings in subset of children with positive CT findings

A and B, Unenhanced chest CT scans show minimal GGOs (right lower and left upper lobes) (arrows) and no consolidation. Only two lobes were affected, and CT findings were assigned CT severity score of 2. Image courtesy of American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | May 29, 2020
May 29, 2020 — An investigation published open-access in the ...
The paradox is that COVID-19 has manifested the critical need for exactly what the rules require: advancement of interoperability and digital online access to clinical data and imaging, at scale, for care coordination and infection control.

The paradox is that COVID-19 has manifested the critical need for exactly what the rules require: advancement of interoperability and digital online access to clinical data and imaging, at scale, for care coordination and infection control. Getty Images

Feature | Coronavirus (COVID-19) | May 28, 2020 | By Matthew A. Michela
One year after being proposed, federal rules to advance interoperability in healthcare and create easier access for p
The opportunity to converge the silos of data into a cross-functional analysis can provide immense value during the COVID-19 outbreak and in the future

Getty Images

Feature | Coronavirus (COVID-19) | May 28, 2020 | By Jeff Vachon
In the midst of the coronavirus pandemic normal
AI has the potential to help radiologists improve the efficiency and effectiveness of breast cancer imaging

Getty Images

Feature | Breast Imaging | May 28, 2020 | By January Lopez, M.D.
Headlines around the world the past several months declared that...
United Imaging's uMR OMEGA is designed to provide greater access to magnetic resonance imaging (MRI) with the world’s first ultra-wide 75-cm bore 3T MRI.
News | Magnetic Resonance Imaging (MRI) | May 27, 2020
May 27, 2020 — United Imaging's...
In April, the U.S. Food and Drug Administration (FDA) cleared Intelerad’s InteleConnect EV solution for diagnostic image review on a range of mobile devices.
Feature | PACS | May 27, 2020 | By Melinda Taschetta-Millane
Fast, easily accessible patient images are crucial in this day and age, as imaging and medical records take on a new
There were several new developments in digital radiography (DR) technology at the 2019 Radiological Society of North America (RSNA) annual meeting. These trends included integration of artificial intelligence (AI) auto detection technologies, more durable glassless detector plates, and technologies to pull more diagnostic data out of X-ray imaging. Some vendors also have redesigned their DR systems to make them more user-friendly and ergonomic. 
Feature | Digital Radiography (DR) | May 26, 2020 | By Dave Fornell
There were several new developments in digital rad...
An example of DiA'a automated ejection fraction AI software on the GE vScan POCUS system at RSNA 2019.

An example of DiA'a automated ejection fraction AI software on the GE vScan POCUS system at RSNA 2019. Photo by Dave Fornell.

News | Ultrasound Imaging | May 26, 2020
May 12, 2020 — DiA Imaging Analysis, a provider of AI based ultrasound analysis solutions, said it received a governm