News | February 18, 2008

February 19, 2008 - Technology invented by scientists from The Johns Hopkins University and Ben-Gurion University of the Negev can make 3D imaging quicker, easier, less expensive and more accurate, the researchers said.

This new technology, dubbed FINCH, for Fresnel incoherent correlation holography, could have implications in medical applications such as endoscopy, ophthalmology, CT scanning, X-ray imaging and ultrasounds, co-inventor Gary Brooker said. It may also be applicable to homeland security screening, 3D photography and 3D video, he said.

A report presenting the first demonstration of this technology— with a 3D microscope called a FINCHSCOPE— will appear in the March issue of Nature Photonics and is available on the Nature Photonics Web site.

“Normally, 3D imaging requires taking multiple images on multiple planes and then reconstructing the images,” said Brooker, director of the Johns Hopkins University Microscopy Center on the university's Montgomery County Campus. “This is a slow process that is restricted to microscope objectives that have less than optimal resolving power. For this reason, holography currently is not widely applied to the field of 3D fluorescence microscopic imaging.”

The FINCH technology and the FINCHSCOPE uses microscope objectives with the highest resolving power, a spatial light modulator, a charge-coupled device camera and some simple filters to enable the acquisition of 3D microscopic images without the need for scanning multiple planes.

The Nature Photonics article reports on a use of the FINCHSCOPE to take a 3D still image, but moving 3D images are coming, said Brooker and co-inventor Joseph Rosen, professor of electrical and computer engineering at Ben-Gurion University of the Negev in Israel.

“With traditional 3D imaging, you cannot capture a moving object,” Brooker said. “With the FINCHSCOPE, you can photograph multiple planes at once, enabling you to capture a 3D image of a moving object. Researchers now will be able to track biological events happening quickly in cells.”

The research was funded by CellOptic Inc. and a National Science Foundation grant with the technology being demonstrated using equipment at the Johns Hopkins Montgomery County Campus Microscopy Center.

For more information: www.mcc.jhu.edu


Related Content

News | Lung Imaging

June 18, 2025 — Exo recently announced that now included on its Exo Iris is the first ever FDA 510(k) cleared AI for ...

Time June 18, 2025
arrow
News | Computed Tomography (CT)

April 17, 2025 — Nano-X Imaging LTD has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for ...

Time April 18, 2025
arrow
News | Lung Imaging

April, 15, 2025 — Optellum has entered an agreement with Bristol Myers Squibb to leverage AI in early diagnosis and ...

Time April 17, 2025
arrow
News | Artificial Intelligence

April 16, 2025 — An artificial intelligence (AI) program trained to review images from a common medical test can detect ...

Time April 16, 2025
arrow
News | PACS

April 3, 2025 – Konica Minolta Healthcare Americas, Inc. has launched the next-generation of the Exa Platform with the ...

Time April 15, 2025
arrow
News | Ultrasound Women's Health

April 11, 2025 — Contrast-enhanced ultrasound (CEUS) is a safe and accurate diagnostic imaging option for pregnant women ...

Time April 11, 2025
arrow
News | Pediatric Imaging

April 10, 2025 — Cincinnati Children’s and GE HealthCare will form a strategic research program focused on driving ...

Time April 10, 2025
arrow
News | Focused Ultrasound Therapy

March 31, 2025 — Neuropathic pain affects up to 10 percent of the global population and can be challenging to manage ...

Time April 02, 2025
arrow
News | Breast Imaging

March 20, 2025 — GE HealthCare has launched Invenia Automated Breast Ultrasound (ABUS) Premium, the latest 3D ultrasound ...

Time March 21, 2025
arrow
News | X-Ray

March 18, 2025 — GE HealthCare recently announced a collaboration with NVIDIA expanding the existing relationship ...

Time March 19, 2025
arrow
Subscribe Now