News | February 18, 2008

February 19, 2008 - Technology invented by scientists from The Johns Hopkins University and Ben-Gurion University of the Negev can make 3D imaging quicker, easier, less expensive and more accurate, the researchers said.

This new technology, dubbed FINCH, for Fresnel incoherent correlation holography, could have implications in medical applications such as endoscopy, ophthalmology, CT scanning, X-ray imaging and ultrasounds, co-inventor Gary Brooker said. It may also be applicable to homeland security screening, 3D photography and 3D video, he said.

A report presenting the first demonstration of this technology— with a 3D microscope called a FINCHSCOPE— will appear in the March issue of Nature Photonics and is available on the Nature Photonics Web site.

“Normally, 3D imaging requires taking multiple images on multiple planes and then reconstructing the images,” said Brooker, director of the Johns Hopkins University Microscopy Center on the university's Montgomery County Campus. “This is a slow process that is restricted to microscope objectives that have less than optimal resolving power. For this reason, holography currently is not widely applied to the field of 3D fluorescence microscopic imaging.”

The FINCH technology and the FINCHSCOPE uses microscope objectives with the highest resolving power, a spatial light modulator, a charge-coupled device camera and some simple filters to enable the acquisition of 3D microscopic images without the need for scanning multiple planes.

The Nature Photonics article reports on a use of the FINCHSCOPE to take a 3D still image, but moving 3D images are coming, said Brooker and co-inventor Joseph Rosen, professor of electrical and computer engineering at Ben-Gurion University of the Negev in Israel.

“With traditional 3D imaging, you cannot capture a moving object,” Brooker said. “With the FINCHSCOPE, you can photograph multiple planes at once, enabling you to capture a 3D image of a moving object. Researchers now will be able to track biological events happening quickly in cells.”

The research was funded by CellOptic Inc. and a National Science Foundation grant with the technology being demonstrated using equipment at the Johns Hopkins Montgomery County Campus Microscopy Center.

For more information: www.mcc.jhu.edu


Related Content

News | Artificial Intelligence

July 22, 2025 — GE HealthCare has topped a U.S. Food and Drug Administration (FDA) list of AI-enabled medical device ...

Time July 23, 2025
arrow
News | Breast Imaging

QT Imaging Holdings, Inc. has announced the launch of its latest QTviewer, version 2.8. QTviewer stores and displays the ...

Time July 21, 2025
arrow
News | FDA

July 8, 2025 — Mendaera, Inc., a healthcare technology company focused on developing robotics that can be deployed ...

Time July 08, 2025
arrow
News | PET-CT

June 19, 2025 — Building on a collaboration that spans more than three decades, GE HealthCare has renewed its research ...

Time June 19, 2025
arrow
News | Point-of-Care Ultrasound (POCUS)

June 17, 2025 — Royal Philips has announced the global launch of the Flash Ultrasound System 5100 POC — a new point-of ...

Time June 19, 2025
arrow
News | Lung Imaging

June 18, 2025 — Exo recently announced that now included on its Exo Iris is the first ever FDA 510(k) cleared AI for ...

Time June 18, 2025
arrow
News | Computed Tomography (CT)

April 17, 2025 — Nano-X Imaging LTD has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for ...

Time April 18, 2025
arrow
News | Lung Imaging

April, 15, 2025 — Optellum has entered an agreement with Bristol Myers Squibb to leverage AI in early diagnosis and ...

Time April 17, 2025
arrow
News | Artificial Intelligence

April 16, 2025 — An artificial intelligence (AI) program trained to review images from a common medical test can detect ...

Time April 16, 2025
arrow
News | PACS

April 3, 2025 – Konica Minolta Healthcare Americas, Inc. has launched the next-generation of the Exa Platform with the ...

Time April 15, 2025
arrow
Subscribe Now