News | February 18, 2008

3D Imaging Made Quicker, Easier

February 19, 2008 - Technology invented by scientists from The Johns Hopkins University and Ben-Gurion University of the Negev can make 3D imaging quicker, easier, less expensive and more accurate, the researchers said.

This new technology, dubbed FINCH, for Fresnel incoherent correlation holography, could have implications in medical applications such as endoscopy, ophthalmology, CT scanning, X-ray imaging and ultrasounds, co-inventor Gary Brooker said. It may also be applicable to homeland security screening, 3D photography and 3D video, he said.

A report presenting the first demonstration of this technology— with a 3D microscope called a FINCHSCOPE— will appear in the March issue of Nature Photonics and is available on the Nature Photonics Web site.

“Normally, 3D imaging requires taking multiple images on multiple planes and then reconstructing the images,” said Brooker, director of the Johns Hopkins University Microscopy Center on the university's Montgomery County Campus. “This is a slow process that is restricted to microscope objectives that have less than optimal resolving power. For this reason, holography currently is not widely applied to the field of 3D fluorescence microscopic imaging.”

The FINCH technology and the FINCHSCOPE uses microscope objectives with the highest resolving power, a spatial light modulator, a charge-coupled device camera and some simple filters to enable the acquisition of 3D microscopic images without the need for scanning multiple planes.

The Nature Photonics article reports on a use of the FINCHSCOPE to take a 3D still image, but moving 3D images are coming, said Brooker and co-inventor Joseph Rosen, professor of electrical and computer engineering at Ben-Gurion University of the Negev in Israel.

“With traditional 3D imaging, you cannot capture a moving object,” Brooker said. “With the FINCHSCOPE, you can photograph multiple planes at once, enabling you to capture a 3D image of a moving object. Researchers now will be able to track biological events happening quickly in cells.”

The research was funded by CellOptic Inc. and a National Science Foundation grant with the technology being demonstrated using equipment at the Johns Hopkins Montgomery County Campus Microscopy Center.

For more information: www.mcc.jhu.edu

Related Content

News | Advanced Visualization | November 13, 2018
Canon Medical Systems USA and Applied Radiology will host a pair of expert-led forums in high-resolution imaging and...
Sponsored Content | Videos | Digital Radiography (DR) | November 12, 2018
VIVIX-S 1417N is a multi-purpose portable flat panel detector for addressing busy workflow in medical facilities.
ContextVision Introduces AI-Powered Image Enhancement for Digital Radiography
Technology | Artificial Intelligence | November 09, 2018
With the integration of deep learning technology, ContextVision takes digital radiography to new levels with its latest...
New Robotic Arm System Optimizes Testing of Ultrasound Probes

Image courtesy of Esaote

News | Ultrasound Imaging | November 09, 2018
Medical imaging company Esaote and The BioRobotics Institute of Scuola Superiore Sant’Anna in Pisa, Italy, have...
The Fujifilm FCT Embrace CT System displayed for the first time at ASTRO 2018.
360 Photos | 360 View Photos | November 07, 2018
Fujifilm's first FDA-cleared compu...
MaxQ AI Receives FDA Clearance for Accipio Ix Intracranial Hemorrhage Platform
Technology | Artificial Intelligence | November 07, 2018
MaxQ AI announced that its Accipio Ix intracranial hemorrhage (ICH) detection software has received 510(k) clearance...
GE Healthcare Discovery RF Gen 2 system displayed at ASTRO 2018. It is a dedicated computed tomography (CT) scanner for radiation oncology
360 Photos | 360 View Photos | November 07, 2018
This is the GE Healthcare Discovery RF Gen 2 system displayed at the ...
Results of the vertebrae-based analysis (383 vertebrae in 34 patients) for detection of BME.

Results of the vertebrae-based analysis (383 vertebrae in 34 patients) for detection of BME.

Sponsored Content | Case Study | Computed Tomography (CT) | November 06, 2018
The following is a summary of a study published in the
The Acuson Sequoia

The Acuson Sequoia from Siemens Healthineers.

Feature | Ultrasound Imaging | November 05, 2018 | By Jeff Zagoudis
As the world’s most utilized medical imaging modality, ultrasound is likely to be featured heavily at the 2018...
The NeuViz 16 Essence from Neusoft Medical Systems.

The NeuViz 16 Essence from Neusoft Medical Systems.

Feature | Computed Tomography (CT) | November 05, 2018 | By Melinda Taschetta-Millane
According to an industry mark...