News | 3-D Printing | April 18, 2017

3-D Prints Compare Effectiveness of Top Surgical Techniques for Repairing Heel Deformity

Analysis finds that none of the techniques provided adequate correction of Charcot-Marie-Tooth disease

3-D Prints Compare Effectiveness of Top Surgical Techniques for Repairing Heel Deformity

April 18, 2017 — Using 3-D models of a patient’s foot, investigators at Cedars-Sinai have found that the three leading procedures for treating heel deformities do not adequately correct the debilitating problem.

Investigators used 18 identical 3-D prints of a single patient’s heel to evaluate the most common techniques for treating Charcot-Marie-Tooth disease (CMT), a genetic neuromuscular disease that kills the long nerves in the hands and feet. The disease, named after three physicians who first identified it in 1886, affects 2.8 million people worldwide.

The Cedars-Sinai investigators focused on the deformity of the heel bone, which is frequently twisted inward in patients with Charcot-Marie-Tooth, making it difficult to walk without assistance. The researchers used a CAT scan of a patient’s heel to create the 3-D prints, and then used the models to compare correction methods from three different operations.

The research findings, presented during this year’s American Academy of Orthopaedic Surgeons annual meeting March 14-18 in San Diego,  found that none of the techniques provided adequate correction of the deformity.

“Ultimately our findings offer hope for better techniques to help patients with Charcot-Marie-Tooth disease live a better quality of life,” said Glenn B. Pfeffer, M.D., lead author of the study and director of the Foot and Ankle Surgery Program at Cedars-Sinai.

The study was funded by the Charcot-Marie-Tooth Association (CMTA), an organization focused solely on promoting the education, management and treatment of patients with CMT disorders.

The abstract for the study was one of six selected from more than 900 for the “Game Changers” session at this year’s AAOS annual meeting. The designation goes to techniques most likely to change the practice in the next three years.

Cedars-Sinai investigators who collaborated on the study included Max P. Michalski, M.D., Tina Basak, M.D., and Joseph Giaconi, M.D.

“This is one of the first times 3-D prints have been used in orthopedic research and we’re thankful for the support of CMTA to use this new technology to help improve patient care,” Pfeffer said.

Pfeffer, who is also co-director of the Charcot-Marie-Tooth Center of Excellence at Cedars-Sinai, said he and his investigative team will use 3-D prints to do more research comparing additional procedures.

For more information: www.cedars-sinai.edu

Related Content

Qioptiq Introduces SlimLine for X-ray Diagnostics Featuring Spine Mode
Technology | Orthopedic Imaging | February 23, 2018
Qioptiq, an Excelitas Technologies Company, recently introduced SlimLine for X-ray Diagnostics featuring Spine Mode....
Aidoc Introduces AI Solution for Whole-Body CT Scan Analysis
News | Artificial Intelligence | February 20, 2018
Deep learning startup company Aidoc announced what it calls the world’s first and only comprehensive, full-body...
FDA Clears Siemens Healthineers' GOKnee3D MRI Application
Technology | Magnetic Resonance Imaging (MRI) | February 19, 2018
The U.S. Food and Drug Administration (FDA) has cleared GOKnee3D, a magnetic resonance imaging (MRI) application from...
NIH Issues $2.2 Million Grant for Augmented Reality Cardiac Hologram Research
News | Advanced Visualization | February 15, 2018
February 15, 2018 — The National Institutes of Health (NIH) awarded a $2.2 million research grant to healthcare techn
AHRA and Canon Medical Systems Announce 2017 Putting Patients First Grant Winners
News | Patient Engagement | February 14, 2018
The Association for Medical Imaging Management (AHRA) and Canon Medical Systems recently announced the tenth annual...
Patients Lack Information About Imaging Exams
News | Patient Engagement | February 14, 2018
Patients and their caregivers desire information about upcoming imaging examinations, but many are not getting it,...
Planmed Launches Improved Planmed Verity CBCT Scanner
Technology | Computed Tomography (CT) | February 07, 2018
Planmed announced the launch of the improved Planmed Verity cone beam computed tomography (CBCT) scanner for orthopedic...
PSMA PET-CT Clearly Differentiates Prostate Cancer from Benign Tissue

68Ga-PSMA PET/CT images showing multifocal PCA in peripheral zone with GS of 5 1 5 5 10. (A and C) Axial PET images. (B and D) Fused PET/CT images. SUVmax of lesion in B was 84.3 and that of lesion in D was 5.7. IRS was 3, and 80% of cells were stained. Credit: Senior author V Prasad, Charité Universitätsmedizin Berlin, Berlin, Germany.

News | PET-CT | February 05, 2018
February 5, 2018 — Using nuclear medicine...
Overlay Init