News | 3-D Printing | April 18, 2017

3-D Prints Compare Effectiveness of Top Surgical Techniques for Repairing Heel Deformity

Analysis finds that none of the techniques provided adequate correction of Charcot-Marie-Tooth disease

3-D Prints Compare Effectiveness of Top Surgical Techniques for Repairing Heel Deformity

April 18, 2017 — Using 3-D models of a patient’s foot, investigators at Cedars-Sinai have found that the three leading procedures for treating heel deformities do not adequately correct the debilitating problem.

Investigators used 18 identical 3-D prints of a single patient’s heel to evaluate the most common techniques for treating Charcot-Marie-Tooth disease (CMT), a genetic neuromuscular disease that kills the long nerves in the hands and feet. The disease, named after three physicians who first identified it in 1886, affects 2.8 million people worldwide.

The Cedars-Sinai investigators focused on the deformity of the heel bone, which is frequently twisted inward in patients with Charcot-Marie-Tooth, making it difficult to walk without assistance. The researchers used a CAT scan of a patient’s heel to create the 3-D prints, and then used the models to compare correction methods from three different operations.

The research findings, presented during this year’s American Academy of Orthopaedic Surgeons annual meeting March 14-18 in San Diego,  found that none of the techniques provided adequate correction of the deformity.

“Ultimately our findings offer hope for better techniques to help patients with Charcot-Marie-Tooth disease live a better quality of life,” said Glenn B. Pfeffer, M.D., lead author of the study and director of the Foot and Ankle Surgery Program at Cedars-Sinai.

The study was funded by the Charcot-Marie-Tooth Association (CMTA), an organization focused solely on promoting the education, management and treatment of patients with CMT disorders.

The abstract for the study was one of six selected from more than 900 for the “Game Changers” session at this year’s AAOS annual meeting. The designation goes to techniques most likely to change the practice in the next three years.

Cedars-Sinai investigators who collaborated on the study included Max P. Michalski, M.D., Tina Basak, M.D., and Joseph Giaconi, M.D.

“This is one of the first times 3-D prints have been used in orthopedic research and we’re thankful for the support of CMTA to use this new technology to help improve patient care,” Pfeffer said.

Pfeffer, who is also co-director of the Charcot-Marie-Tooth Center of Excellence at Cedars-Sinai, said he and his investigative team will use 3-D prints to do more research comparing additional procedures.

For more information: www.cedars-sinai.edu

Related Content

MRI Plus Mammography Improves Detection of New Breast Cancer After Surgery
News | Breast Imaging | June 22, 2017
A new article published by JAMA Oncology compares outcomes for combined mammography and magnetic resonance imaging (MRI...
Dual-Agent PET/MR With Time of Flight Detects More Cancer

Tc-99m MDP bone scan (left) is negative for osseous lesions. NaF/FDG PET/MRI (right and second slide) confirms absence of bone metastases, but shows liver metastases. Image courtesy of Stanford University.

News | PET-MRI | June 20, 2017
Simultaneous injections of the radiopharmaceuticals fluorine-18 fluorodeoxyglucose (18F-FDG) and 18F-sodium fluoride (...
Combined Optical and Molecular Imaging Could Guide Breast-Conserving Surgery

WLE specimen from a patient with a grade 3, ER-/HER2-, no special type (NST) carcinoma. (A) Cerenkov image; (B) Grey-scale photographic image overlaid with Cerenkov signal. An increased signal from the tumor is visible (white arrows); mean radiance is 871 ± 131 photons/s/cm2/sr, mean TBR is 3.22. Both surgeons measured the posterior margin (outlined in blue) as 2 mm (small arrow); a cavity shaving would have been performed if the image had been available intraoperatively. The medial margin (outlined in green) measured >5 mm by both surgeons. Pathology ink prevented assessing the lateral margin; a phosphorescent signal is visible (open arrows). (C) Specimen radiography image. The absence of one surgical clip to mark the anterior margin, and the odd position of the superior margin clip (white arrow) prevented reliable margin assessment. (D) Combined histopathology image from two adjacent pathology slides on which the posterior margin (bottom of image) and part of the primary tumor are visible (open arrows). The distance from the posterior margin measured 3 mm microscopically (double arrow). The medial margin is > 5 mm (not present in image). Credit: A. D. Purushotham, M.D., King’s College London, UK

News | Nuclear Imaging | June 20, 2017
June 20, 2017 — Breast-conserving surgery (BCS) is the primary treatment for early-stage...
pediatric imaging
News | Pediatric Imaging | June 14, 2017
Despite evidence showing that the routine use of sonography in hospital emergency departments can safely improve care...
News | Clinical Study | June 09, 2017
The milestone Imaging Dementia — Evidence for Amyloid Scanning (IDEAS) Study is working with government and academic...
OCM images

These are sample OCM images (first row) and corresponding histology images (second row) of human breast tissue. The ground truth labels for the tissue type of these images are: (a) carcinoma, (b) lobule, (c) stroma, (d) adipose. Image courtesy of Sunhua Wan, Hsiang-Chieh Lee, Xiaolei Huang, Ting Xu, Tao Xu, Xianxu Zeng, Zhan Zhang, Yuri Sheikine, James L. Connolly, James G. Fujimoto, Chao Zhou

News | Clinical Study | June 07, 2017
According to a recent study, one in four women with breast cancer who opt for a breast-saving lumpectomy will need a...
Research Shows Breast Cancer Surgery Marker Associated With Smaller Radiation Volume
News | Radiation Therapy | May 30, 2017
Patients who were implanted with the BioZorb 3-D bioabsorbable marker during their lumpectomy could be treated with...
Follow-Up Imaging Less When Radiologists Read Emergency Department Ultrasounds
News | Ultrasound Imaging | May 30, 2017
According to a new study presented at the American College of Radiology (ACR) annual meeting, the use of follow-up...
Targeted MRI Could Pinpoint Aggressive Prostate Cancers Before They Spread

The ZD2-Gd probe, represented by the orange ball and green arrow, binds to the EDB-FN in the prostate cancer cells with high metastatic potential. This results in a strong MRI signal (upper right). Prostate cancer cells with low metastatic potential have no EDB-FN and so there is no MRI signal (lower right). Credit: Han, et al., Bioconjug Chem-Apr-2017

News | Prostate Cancer | May 24, 2017
A research team funded by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) has engineered a...
Barco Presents Multimodality Imaging Display Solutions at SIIM 2017
News | Flat Panel Displays | May 24, 2017
Barco announced that several of its diagnostic display systems will be on display at the 2017 Society for Imaging...
Overlay Init