News | Medical 3-D Printing | March 23, 2018

3-D Printed Models Improve Medical Student Training

Less expensive and more realistic 3-D models of blood vessels may offer alternative to the commercial standard

3-D Printed Models Improve Medical Student Training

March 23, 2018 — A relatively inexpensive 3-D-printed model of a patient's blood vessels is as effective as current commercially available models for training medical students in interventional radiology vascular access, according to a study presented at the Society of Interventional Radiology's 2018 Annual Scientific Meeting, March 17-22 in Los Angeles.

"We've come up with a viable method for creating something that's inexpensive and also customizable to individual patients," said Alexander Sheu, M.D., an interventional and diagnostic radiology resident at Stanford University School of Medicine, and lead author of the study. "The current model used to train medical students lacks the ability to replicate a patient's anatomy. Our 3-D-printed model will provide students a more realistic experience, allowing for better preparation before they perform procedures on real patients."

Interventional radiologists commonly treat patients using less-invasive options to surgery that involve inserting a catheter through a major artery under ultrasound guidance in order to reach internal organs or blood vessels. The researchers tested medical students' comfort in using a 3-D-printed model, compared to commercially available models, to simulate ultrasound-guided access through the femoral artery in the groin.

Thirty-two students were randomized to practice with the 3-D-printed model or the commercial model in a simulation experience developed by the authors of the study. Prior to the simulation exercise, 73 percent of the 3-D group and 76 percent of the commercial-model group indicated that they did not feel confident in performing the procedure. After the training, most of the 3-D model and commercial model trainees agreed that their respective models were easy to use (93.3 percent and 94.1 percent) and helpful for practice (93.3 percent and 94.1 percent). Additionally, confidence in performing the procedure, known as femoral artery access, increased a similar amount in both groups.

"Now that we know that a 3-D-printed model is just as effective at training medical students in this type of procedure, this simulation experience can be made available to even more trainees and potentially improve procedural skills for residents, fellows and attendees," said Sheu. "We foresee this really making an impact in the world of interventional radiology training."

Medical simulation exercises are playing an increasingly larger role in medical training; especially in the field of interventional radiology. Many commercially available devices cost between $2,000 and $3,000 each, while 3-D printing has the ability to produce practice models inexpensively and more realistically, the authors said.

The 3-D printing technology can reproduce a patient's exact vessels based on a computed tomography (CT) scan and produce an ultrasound-compatible vascular access model that is unique to that patient's anatomy. To adapt the 3-D printing technology to their needs, the researchers used a tissue-mimicking material that was durable to withstand punctures, but still felt realistic. This tailoring allows trainees to practice with variations in anatomy before they encounter them during a procedure, which may help to lower complication rates, researchers said.

As a result of these findings, the research team aims to extend this training to resident and fellow trainees and to study additional possible benefits of these devices. In addition, the team may develop 3-D-printed models for other parts of the body with arteries accessed in interventional radiology.

For more information: www.sirmeeting.org

 

Related Content

IBM collected a dataset of 52,936 images from 13,234 women who underwent at least one mammogram between 2013 and 2017.

IBM collected a dataset of 52,936 images from 13,234 women who underwent at least one mammogram between 2013 and 2017, and who had health records for at least one year prior to the mammogram. The algorithm was trained on 9,611 mammograms. Image courtesy of Radiology.

Feature | Artificial Intelligence | July 19, 2019 | Michal Chorev
Breast cancer is the global leading cause of cancer-related deaths in women, and the most commonly diagnosed cancer...
Delta T1 Maps Provide Quantitative, Automated Solution to Assess Brain Tumor Burden
News | Neuro Imaging | July 05, 2019
Imaging Biometrics LLC (IB) a subsidiary of IQ-AI Ltd., is highlighting a recently published study in the American...
TeraRecon Unveils iNtuition AI Data Extractor
News | Advanced Visualization | July 03, 2019
Artificial Intelligence (AI) and advanced visualization company TeraRecon announced its new iNtuition AI Data Extractor...
Varian Purchasing Embolic Bead Assets from Boston Scientific
News | Interventional Radiology | July 03, 2019
Varian announced it has signed an asset purchase agreement to acquire the Boston Scientific portfolio of drug-loadable...
A 3-D printed model (left) and a model constructed in augmented reality (right), both of a kidney with a tumor. In both models, the kidney is clear; the tumor is visible in purple on the AR model and in white on the 3-D printed model.

A 3-D printed model (left) and a model constructed in augmented reality (right), both of a kidney with a tumor. In both models, the kidney is clear; the tumor is visible in purple on the AR model and in white on the 3-D printed model. Photo courtesy of Nicole Wake, Ph.D.

Feature | Advanced Visualization | July 02, 2019 | By Jeff Zagoudis
Three-dimensional (3-D) printing and...

Image courtesy of Philips Healthcare

Feature | Molecular Imaging | July 01, 2019 | By Sharvari Rale
Diagnostic procedures have always been a cornerstone of early prognosis and patient triaging.
Mentice and Siemens Healthineers Integrate VIST Virtual Patient With Artis Icono Angiography System
Technology | Interventional Radiology | June 24, 2019
Siemens Healthineers and Mentice AB announced the collaboration to fully integrate Mentice’s VIST Virtual Patient into...
DOSIsoft Receives FDA 510(k) Clearance for Planet Onco Dose Software
Technology | Information Technology | June 20, 2019
DOSIsoft announced it has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) to market Planet...