News | Medical 3-D Printing | March 23, 2018

3-D Printed Models Improve Medical Student Training

Less expensive and more realistic 3-D models of blood vessels may offer alternative to the commercial standard

3-D Printed Models Improve Medical Student Training

March 23, 2018 — A relatively inexpensive 3-D-printed model of a patient's blood vessels is as effective as current commercially available models for training medical students in interventional radiology vascular access, according to a study presented at the Society of Interventional Radiology's 2018 Annual Scientific Meeting, March 17-22 in Los Angeles.

"We've come up with a viable method for creating something that's inexpensive and also customizable to individual patients," said Alexander Sheu, M.D., an interventional and diagnostic radiology resident at Stanford University School of Medicine, and lead author of the study. "The current model used to train medical students lacks the ability to replicate a patient's anatomy. Our 3-D-printed model will provide students a more realistic experience, allowing for better preparation before they perform procedures on real patients."

Interventional radiologists commonly treat patients using less-invasive options to surgery that involve inserting a catheter through a major artery under ultrasound guidance in order to reach internal organs or blood vessels. The researchers tested medical students' comfort in using a 3-D-printed model, compared to commercially available models, to simulate ultrasound-guided access through the femoral artery in the groin.

Thirty-two students were randomized to practice with the 3-D-printed model or the commercial model in a simulation experience developed by the authors of the study. Prior to the simulation exercise, 73 percent of the 3-D group and 76 percent of the commercial-model group indicated that they did not feel confident in performing the procedure. After the training, most of the 3-D model and commercial model trainees agreed that their respective models were easy to use (93.3 percent and 94.1 percent) and helpful for practice (93.3 percent and 94.1 percent). Additionally, confidence in performing the procedure, known as femoral artery access, increased a similar amount in both groups.

"Now that we know that a 3-D-printed model is just as effective at training medical students in this type of procedure, this simulation experience can be made available to even more trainees and potentially improve procedural skills for residents, fellows and attendees," said Sheu. "We foresee this really making an impact in the world of interventional radiology training."

Medical simulation exercises are playing an increasingly larger role in medical training; especially in the field of interventional radiology. Many commercially available devices cost between $2,000 and $3,000 each, while 3-D printing has the ability to produce practice models inexpensively and more realistically, the authors said.

The 3-D printing technology can reproduce a patient's exact vessels based on a computed tomography (CT) scan and produce an ultrasound-compatible vascular access model that is unique to that patient's anatomy. To adapt the 3-D printing technology to their needs, the researchers used a tissue-mimicking material that was durable to withstand punctures, but still felt realistic. This tailoring allows trainees to practice with variations in anatomy before they encounter them during a procedure, which may help to lower complication rates, researchers said.

As a result of these findings, the research team aims to extend this training to resident and fellow trainees and to study additional possible benefits of these devices. In addition, the team may develop 3-D-printed models for other parts of the body with arteries accessed in interventional radiology.

For more information: www.sirmeeting.org

 

Related Content

Older Biologic Age Linked to Elevated Breast Cancer Risk
News | Women's Health | March 19, 2019
Biologic age, a DNA-based estimate of a person’s age, is associated with future development of breast cancer, according...
HeartFlow Analysis Successfully Stratifies Heart Disease Patients at One Year
News | CT Angiography (CTA) | March 19, 2019
Late-breaking results confirm the HeartFlow FFRct (fractional flow reserve computed tomography) Analysis enables...
DrChrono and 3D4Medical Partner to Bring 3-D Interactive Modeling to Physician Practices
News | Advanced Visualization | March 18, 2019
DrChrono Inc. and 3D4Medical have teamed up so practices across the United States can access 3-D interactive modeling...
PET Scans Show Biomarkers Could Spare Some Breast Cancer Patients from Chemotherapy
News | PET Imaging | March 18, 2019
A new study positron emission tomography (PET) scans has identified a biomarker that may accurately predict which...
SyncVision iFR Co-registration from Philips Healthcare maps iFR pressure readings onto angiogram.

SyncVision iFR Co-registration from Philips Healthcare maps iFR pressure readings onto angiogram. Results from an international study presented at #ACC19 show that pressure readings in coronary arteries may identify locations of stenoses remaining after cardiac cath interventions.

Feature | Cardiac Imaging | March 18, 2019 | By Greg Freiherr
As many as one in four patients who undergo cath lab interventions can benefit from a technology that identifies the
Non-Contrast MRI Effective in Monitoring MS Patients
News | Neuro Imaging | March 18, 2019
Brain magnetic resonance imaging (MRI) without contrast agent is just as effective as the contrast-enhanced approach...
Jennifer N. A. Silva, M.D., a pediatric cardiologist at Washington University School of Medicine in Saint Louis, Mo., describes “mixed reality” at ACC19 Future Hub.

Jennifer N. A. Silva, M.D., a pediatric cardiologist at Washington University School of Medicine in Saint Louis, Mo., describes “mixed reality” at ACC19 Future Hub.

Feature | Cardiac Imaging | March 17, 2019 | By Greg Freiherr
Virtual reality (VR) and its less immersive kin, augmented reality (AR), are gaining traction in some medical applica
Bay Labs Announces New Data on EchoGPS, AutoEF AI Software at ACC.19
News | Cardiovascular Ultrasound | March 15, 2019
Artificial intelligence (AI) company Bay Labs announced the presentation of two studies assessing performance of the...
CT, Mammograms Offer Clues to Preventing Heart Problems After Cancer Treatment
News | Cardio-oncology | March 13, 2019
An imaging procedure commonly performed before starting cancer treatment can provide valuable clues about a patient's...
Iron Measurements With MRI Reveal Stroke's Impact on Brain

Images show illustrative examples of visual R2? modifications within substantia nigra (SN) at baseline (24-72 h) and follow-up (1 y) in striatum (participants 1 and 2) and control groups (participants 3 and 4). Image courtesy of the Radiological Society of North America (RSNA).

News | Stroke | March 12, 2019
March 12, 2019 — A simple ...