Feature | July 20, 2012

UT Southwestern Medical Center Seeks Operation of Proton Therapy Center Planned for North Texas

Hak Choy, M.D.

Hak Choy, M.D., is chairman of radiation oncology at UT Southwestern Medical Center.

July 20, 2012 — The University of Texas (UT) Southwestern Medical Center, seeking to broaden its array of radiation oncology treatments, potentially could play a key role in operating a proton therapy center for North Texas, currently being planned and funded by San Diego-based Advanced Particle Therapy (APT).

The plan, announced earlier in July, is subject to the approval of the UT System Board of Regents. Under the terms of a letter of intent, the proposed 100,000-square-foot center would be operated by UT Southwestern physicians and staff, but built and developed by APT. It would be the second such facility in the state and would feature at least four treatment vaults, as well as laboratory space for researchers.

Proton therapy offers a more precise and aggressive approach to destroying cancerous tumors than conventional X-ray radiation. It involves the use of a controlled beam of protons that can be deposited, because of their heavier mass, on a specific target with less collateral damage.

“This is an exciting development in our ability to offer patients in the region access to the best possible treatment options and provide a leadership role in how best to study and apply this technology,” said Bruce Meyer, M.D., executive vice president for health system affairs at UT Southwestern.

There are many types of particles that can be used in radiation treatment, although only two – electrons and protons – are currently in wide clinical use. Pediatric patients and adults with brain, prostate, lung, and head and neck tumors may be among the first to benefit from the new technology.

“The precision of the proton beam allows for unprecedented focus and intensity in especially hard-to-reach places that tend to characterize head and neck cancers – and in pediatric cancers, where access can be anatomically much tighter,” said Hak Choy, M.D., chairman of radiation oncology at UT Southwestern.

The heart of the new proton facility would be a particle accelerator capable of speeding up protons to a superfast velocity – roughly 112,000 miles per second or 60 percent the speed of light. Two types of machines – either a superconducting cyclotron or a synchrotron – can be used for this purpose. UT Southwestern officials would evaluate and select an accelerator early in the project’s development.

APT has entered into an agreement to purchase land for the facility near the UT Southwestern campus, accessible to both physicians and patients alike.

Nationally, there are nine proton centers in operation and eight in development, according to the National Association for Proton Therapy. APT has developed similar centers in San Diego, teaming with Scripps Health and Scripps Clinic Medical Group; in Baltimore with the University of Maryland School of Medicine; and in Atlanta with Emory University Healthcare.

For more information: http://utsouthwestern.edu/education/medical-school/departments/radiation..., www.advancedparticletherapy.com

Related Content

Videos | ASTRO | November 08, 2018
ITN Editor Dave Fornell took a tour of some of the most innovative technologies on display on the expo floor at the 
The Fujifilm FCT Embrace CT System displayed for the first time at ASTRO 2018.
360 Photos | 360 View Photos | November 07, 2018
Fujifilm's first FDA-cleared compu...
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for radiation therapy displayed for the first time since gaining FDA clearance in 2018. It was displayed at the American Society for Radiotherapy and Oncology (ASTRO) 2018 annual meeting. Read more about this system at ASTRO 2018. #ASTRO18 #ASTRO2018
360 Photos | 360 View Photos | November 07, 2018
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for...
GE Healthcare Discovery RF Gen 2 system displayed at ASTRO 2018. It is a dedicated computed tomography (CT) scanner for radiation oncology
360 Photos | 360 View Photos | November 07, 2018
This is the GE Healthcare Discovery RF Gen 2 system displayed at the ...
Proton Therapy for Pediatric Brain Tumors Has Favorable Cognitive Outcomes
News | Proton Therapy | November 06, 2018
Proton therapy treatment for pediatric brain tumor patients is associated with better neurocognitive outcomes compared...
The patient’s wife changes the Optune array. Clinical trials indicate that the electrical fields emitted by Optune have the potential to lengthen the lives of patients with glioblastoma.

The patient’s wife changes the Optune array. Clinical trials indicate that the electrical fields emitted by Optune have the potential to lengthen the lives of patients with glioblastoma.

Feature | Radiation Oncology | November 06, 2018 | By Greg Freiherr
Approximately 11,000 professionals attended the four-day meeting of the...
Videos | Radiation Oncology | November 06, 2018
Genomics can be used to assess a patient's radiosensitivity, which can be used to increase or decrease the radiation