Feature | July 20, 2012

UT Southwestern Medical Center Seeks Operation of Proton Therapy Center Planned for North Texas

Hak Choy, M.D.

Hak Choy, M.D., is chairman of radiation oncology at UT Southwestern Medical Center.

July 20, 2012 — The University of Texas (UT) Southwestern Medical Center, seeking to broaden its array of radiation oncology treatments, potentially could play a key role in operating a proton therapy center for North Texas, currently being planned and funded by San Diego-based Advanced Particle Therapy (APT).

The plan, announced earlier in July, is subject to the approval of the UT System Board of Regents. Under the terms of a letter of intent, the proposed 100,000-square-foot center would be operated by UT Southwestern physicians and staff, but built and developed by APT. It would be the second such facility in the state and would feature at least four treatment vaults, as well as laboratory space for researchers.

Proton therapy offers a more precise and aggressive approach to destroying cancerous tumors than conventional X-ray radiation. It involves the use of a controlled beam of protons that can be deposited, because of their heavier mass, on a specific target with less collateral damage.

“This is an exciting development in our ability to offer patients in the region access to the best possible treatment options and provide a leadership role in how best to study and apply this technology,” said Bruce Meyer, M.D., executive vice president for health system affairs at UT Southwestern.

There are many types of particles that can be used in radiation treatment, although only two – electrons and protons – are currently in wide clinical use. Pediatric patients and adults with brain, prostate, lung, and head and neck tumors may be among the first to benefit from the new technology.

“The precision of the proton beam allows for unprecedented focus and intensity in especially hard-to-reach places that tend to characterize head and neck cancers – and in pediatric cancers, where access can be anatomically much tighter,” said Hak Choy, M.D., chairman of radiation oncology at UT Southwestern.

The heart of the new proton facility would be a particle accelerator capable of speeding up protons to a superfast velocity – roughly 112,000 miles per second or 60 percent the speed of light. Two types of machines – either a superconducting cyclotron or a synchrotron – can be used for this purpose. UT Southwestern officials would evaluate and select an accelerator early in the project’s development.

APT has entered into an agreement to purchase land for the facility near the UT Southwestern campus, accessible to both physicians and patients alike.

Nationally, there are nine proton centers in operation and eight in development, according to the National Association for Proton Therapy. APT has developed similar centers in San Diego, teaming with Scripps Health and Scripps Clinic Medical Group; in Baltimore with the University of Maryland School of Medicine; and in Atlanta with Emory University Healthcare.

For more information: http://utsouthwestern.edu/education/medical-school/departments/radiation..., www.advancedparticletherapy.com

Related Content

Raysearch RayStation
Feature | Radiation Therapy | June 05, 2018 | By Melinda Taschetta-Millane
Treatment planning systems are at the heart of r...
Lung Decision Precision
News | Lung Cancer | June 04, 2018
For smokers and former smokers, the threat of lung cancer always lurks in the shadows.
Beaumont Researchers Invent New Mode of Proton Treatment for Lung Cancer
News | Proton Therapy | May 31, 2018
Members of Beaumont Health’s proton therapy team presented research on a new treatment for patients with lung cancer at...
More Than 60 Percent of Patients Seeking Proton Therapy Initially Denied Coverage
News | Proton Therapy | May 25, 2018
The Alliance for Proton Therapy Access has released a national report revealing the heavy emotional and financial...
Metal artifact reduction led to a 20 percent increase in the planning target volume (PTV) in this prostate cancer case from Henry Ford Health System. The volume of the healthy bladder tissue to be spared was also reduced by 4 percent.

Metal artifact reduction led to a 20 percent increase in the planning target volume (PTV) in this prostate cancer case from Henry Ford Health System. The volume of the healthy bladder tissue to be spared was also reduced by 4 percent.

Feature | Computed Tomography (CT) | May 03, 2018 | By Jeff Zagoudis
Computed tomography (CT) has long been the standard of care for imaging to plan radiation therapy (RT) treatments. 
MedStar Georgetown Conducts World's First Hyperscan Proton Therapy Treatment
News | Proton Therapy | April 27, 2018
For the first time, cancer patients in the Washington, D.C. metropolitan region have access to proton therapy, now...
First Patient Treated on Mevion's S250i Proton Therapy System
News | Proton Therapy | April 05, 2018
Mevion Medical Systems announced the treatment of the first patient in the world on the Mevion S250i Proton Therapy...
MEDraysintell released a report in January revising its projection for the number of proton therapy centers worldwide by 2030 down from 1,200 to 900. The company said that more than 50 proton therapy treatment rooms would need to be opened every year from 2018 to 2030 to hit the original projection of 1,200.

MEDraysintell released a report in January revising its projection for the number of proton therapy centers worldwide by 2030 down from 1,200 to 900. The company said that more than 50 proton therapy treatment rooms would need to be opened every year from 2018 to 2030 to hit the original projection of 1,200.

Feature | Proton Therapy | March 06, 2018 | By Jeff Zagoudis
Proton therapy has experienced major growth in the last decade, but that growth seems to have slowed slightly in recent...
​ITN Celebrates World Cancer Day 2018
News | Radiation Oncology | February 01, 2018
World Cancer Day takes place annually on Feb.
RayStation Selected for India’s First Proton Center
News | Proton Therapy | February 01, 2018
February 1, 2018 – Apollo Hospitals, Asia´s foremost integrated healthcare provider, has selected RayStation for a ne
Overlay Init