Feature | April 18, 2014

Researchers Use MRI Method to Identify Presence of Brown Fat

Pictured is a digitally enhanced axial MRI of the upper chest (as if viewed from the feet). Areas of potential brown fat are shown in green. Courtesy University of Warwick, UHCW.

April 18, 2014 — The first MRI (magnetic resonance imaging) scan to show 'brown fat' in a living adult could prove to be an essential step toward a new wave of therapies to aid the fight against diabetes and obesity.

Researchers from Warwick Medical School and University Hospitals Coventry and Warwickshire NHS Trust have used an MRI-based method to identify and confirm the presence of brown adipose tissue in a living adult.

Brown fat has become a hot topic for scientists due its ability to use energy and burn calories, helping to keep weight in check. Understanding the brown fat tissue and how it can be used to such ends is of growing interest in the search to help people suffering from obesity or are at a high risk of developing diabetes.

Dr. Thomas Barber, department of metabolic and vascular health, Warwick Medical School, Coventry, England, explained, "This is an exciting area of study that requires further research and discovery. The potential is there for us to develop safe and effective ways of activating this brown fat to promote weight loss and increase energy expenditure – but we need more data to be able to get to that point. This particular proof of concept is key, as it allows us to pursue MRI techniques in future assessments and gather this required information."

The study, published in the  Journal of Clinical Endocrinology and Metabolism, outlines the benefits of using MRI scans over the existing method of positron emission tomography (PET). Whilst PET does show brown fat activity, it is subject to a number of limitations, including the challenge of signal variability from a changing environmental temperature.

Unlike PET data which only displays activity, MRIs can show brown fat content whether active or not – providing a detailed insight into where it can be found in the adult body. This information could prove vital in the creation of future therapies that seek to activate deposits of brown fat.

"The MRI allows us to distinguish between the brown fat and the more well-known white fat that people associate with weight gain, due to the different water to fat ratio of the two tissue types. We can use the scans to highlight what we term 'regions of interest' that can help us to build a picture of where the brown fat is located,” added Barber.

Barber works at the Human Metabolism Research Unit at UHCW. The unit has benefitted from substantial investment through the Science City Research Alliance, a large-scale, long-term research program between the University of Birmingham and the University of Warwick.

For more information: www.warwick.ac.uk

Related Content

RSNA Study Shows Real-Time Indicator Improves Mammographic Compression
News | Mammography | December 12, 2018
Sigmascreening recently announced that more than 100,000 women have had mammography exams with the Sensitive Sigma...
Youth Football Changes Nerve Fibers in Brain

Statistically significant clusters (red-colored) showing group differences (Control vs. Football) in white matter strain along the primary (F1) and secondary (F2) fibers. While body of corpus callosum (BBC) showed relative shrinkage in Football group, the other clusters showed relative stretching of fibers. PCR: Posterior Corona Radiata, PLIC: Posterior Limb of Internal Capsule, SCR: Superior Corona Radiata, SLF: Superior Longitudinal Fasciculus, SCC: Splenium of Corpus Callosum. Image courtesy of Kim et al.

News | Neuro Imaging | December 07, 2018
Magnetic resonance imaging (MRI) scans show repetitive blows to the head result in brain changes among youth football...
Snoring Poses Greater Cardiac Risk to Women
News | Women's Health | November 29, 2018
Obstructive sleep apnea (OSA) and snoring may lead to earlier impairment of cardiac function in women than in men,...
Artificial Intelligence May Help Reduce Gadolinium Dose in MRI

Example of full-dose, 10 percent low-dose and algorithm-enhanced low-dose. Image courtesy of Enhao Gong, Ph.D.

News | Contrast Media | November 27, 2018
Researchers are using artificial intelligence (AI) to reduce the dose of a contrast agent that may be left behind in...
Women Benefit From Mammography Screening Beyond Age 75
News | Mammography | November 26, 2018
Women age 75 years and older should continue to get screening mammograms because of the comparatively high incidence of...
Philips Launches IntelliSpace Discovery Research Platform at RSNA
Technology | Artificial Intelligence | November 20, 2018
Ahead of the 2018 Radiological Society of North America Annual Meeting (RSNA), Nov. 25-30 in Chicago, Royal Philips...
Bay Labs and Northwestern Medicine Enroll First Patient in AI Echocardiography Study
News | Cardiovascular Ultrasound | November 19, 2018
Medical artificial intelligence (AI) company Bay Labs and Northwestern Medicine announced that the first patient has...
Immune Inflammatory Levels Linked to Disease-Free Survival in Prostate Cancer
News | Prostate Cancer | November 19, 2018
Data from a validation study of a high-risk prostate cancer trial suggests that higher levels of pretreatment...
Life Image and Mendel.ai Bringing Artificial Intelligence to Clinical Trial Development
News | Artificial Intelligence | November 15, 2018
Life Image and Mendel.ai announced a new strategic partnership that will facilitate the adoption and enhancement of...
Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis
News | Neuro Imaging | November 14, 2018
Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according...