Feature | October 01, 2008 | Mike Arani, MS

Monitors Meet Radiology Suite Needs

Demand for patient monitoring technology in radiology environments is driving the niche market.


Since its clinical adoption in the early 1990s, anesthesia agent monitoring has evolved significantly from standalone units to modules that are used in multiparameter monitoring systems. According to the American Society of Anesthesiologists (ASA), over 40 million anesthetics are delivered each year in the United States, irrespective of the care setting. In every case, delivery management and monitoring of the process are crucial to the success of the procedures.
Demand Goes Enterprisewide
Today, in addition to anesthesia agents, arterial blood pressure, electrocardiogram (ECG), pulse oximetry (SpO2) and end-tidal CO2 (ETco2) are also closely monitored parameters in patients under general anesthesia. According to the ASA the routine monitoring of these parameters is crucial for ensuring the safety of patients during general anesthesia. Of the multiparameter anesthesia agent monitoring units, roughly three-quarters are available as components of patient monitoring systems, while the remaining are often components of anesthesia workstations.
As healthcare providers move towards enterprise-level monitoring solutions, anesthesia equipment is also developed to fit full enterprise solution models. The latest anesthesia workstation models offer a higher level of versatility and flexibility through seamless integration of different modules and applications.
Major patient monitoring vendors such as GE Healthcare, Philips Medical Solutions and Draeger Medical offer anesthesia workstations that encompass their advanced monitoring and ventilation technologies while simplifying clinical workflow through pre-configured integration into their respective clinical information systems.
Monitoring in Radiology Environments
Some innovations in anesthesia management are driven by niche demands presented by specific procedure limitations. The demand for patient monitoring technology in radiology environments such as Magnetic Resonance Imaging (MRI) has driven the development of systems that can function properly in magnetic fields without distorting the image quality or patient safety. In general, the medical devices developed specifically for MRI use are referred to as MR- or MRI-compatible.
Today, MRI of any body part can be performed under anesthesia, for pediatric or adult patients who have difficulty remaining immobile due to bodily pain, ventilator dependency or claustrophobia. Some studies have shown that about one in four people cannot tolerate being in closed MRI machines because they suffer from claustrophobia, and therefore require some form of anesthesia to help them through the experience. Administering anesthesia to a patient undergoing an MRI procedure allows the machine to take the best possible images free from any complications caused by the individual moving about.
Following is a list of possible complications solutions in anesthesia management during MRI:
Anesthesia Machines: Due to the high level magnetic field (up to 3 Tesla), compatible anesthesia machines are necessary to eliminate any effects on image quality. Also, the magnetic field can interfere with anesthesia machine functionality. MR-compatible anesthesia machine are built with special shielding material.
ECG Monitor: Electrocardiography leads can act as antennas and cause MRI image degradation. Also, the voltage induced in the wire leads can cause electrical shock hazards and burns to the patient. To address these adverse effects, non-ferromagnetic fasteners, electrodes and graphite copper cables with plastic springs are used which do not affect MRI image.
Pulse Oximetry: Magnetic fields can deactivate these monitors, therefore non-ferromagnetic or fiber optic wires are used to transfer the data to a monitor that is protected with shielding material.
Blood Pressure Monitoring: To measure the non-invasive blood pressure in patients during an MRI, extended tubing and plastic connectors connect the cuff to the oscillometric monitor place far from the magnet.
Respiratory Gas Monitor and Capnography: Similar to blood pressure, these monitors are interfaced with the patient via extended plastic tubing.
MRI-Compatible Equipment
Most patient monitoring companies offer monitoring solutions specifically designed to tolerate magnetic fields of 1.5 or 3.0 Tesla. In 2005, Medrad Inc. developed an MR vital signs monitoring system, Veris MR, which is compatible with 3 Tesla magnetic fields. Conventional patient-monitoring systems have to be placed outside the magnetically charged scan room due to the risk of getting magnetically attracted to the bore and giving false readings. The Veris monitor addresses this challenge with a shield made of specialized materials that prevent it from being magnetically attracted. Controls for the monitor are available at the patient’s side, or a controlling unit can be set up anywhere at a convenient location. It also has an integral tray that is designed for cable management and accessory storage, thereby providing additional workspace.
Major anesthesia machine manufacturers such as GE Healthcare and Draeger Medical have developed MRI-compatible systems that offer the same high level of functionally as the anesthesia systems used in the ICU and operating rooms.
In August of 2008, Draeger Medical received FDA clearance for its Fabius MRI anesthesia machine. According to Draeger Medical, this system employs the same user interface as Fabius GS, Fabius Tiro and Apollo machines, creating a uniform and consistent interface for the anesthesia provider wherever anesthesia is required.
Overall, where there is challenge, there’s opportunity. Unique healthcare environments such as the radiology suite or cath labs present tremendous opportunity for customized solutions. In the case of MRI, the powerful magnetic field presents the demand for compatible monitoring and anesthesia management solutions. Medical device companies that develop solutions to address such challenges can gain a major competitive advantage and entry to lucrative niche markets.

Mike Arani, MS, is a research analyst for Patient Monitoring at Frost & Sullivan.

Related Content

Imaging Biometrics and Medical College of Wisconsin Awarded NIH Grant
News | Neuro Imaging | September 09, 2019
Imaging Biometrics LLC (IB), in collaboration with the Medical College of Wisconsin (MCW), has received a $2.75 million...
ASNC Announces Multisocietal Cardiac Amyloidosis Imaging Consensus
News | Cardiac Imaging | September 09, 2019
September 9, 2019 — The American Society of Nuclear Cardiology (ASNC) published a new expert consensus document along
AJR Publishes Gender Affirmation Surgery Primer for Radiologists. transgender radiology images,

Scout image from contrast-enhanced CT shows erectile implant; stainless steel and silicone anchors (arrow) transfixed to pubic bone are asymmetric.

News | Orthopedic Imaging | September 05, 2019
September 5, 2019 — An ahead-of-print article published in the December issue of the American Journal of Roentgen
Neurological Brain Markers Might Detect Risk for Psychotic Disorders

Researchers at the University of Missouri used MRI scans similar to this photo to find neurological markers in the human brain. These markers can be used to detect people at risk for developing psychotic disorders and to understand when this risk has been successfully treated. Image courtesy of Marquette University/John Kerns.

News | Neuro Imaging | September 04, 2019
Help may be on the way for people who might lose contact with reality through a psychotic disorder, such as...
Medical Imaging Rates Continue to Rise Despite Push to Reduce Their Use
News | Radiology Imaging | September 03, 2019
Despite a broad campaign among physician groups to reduce the amount of medical imaging, use rates of various scans...
High-capacity MRI Scanner Approvals Boosting Innovations in MRI-safe Pulse Oximeters
News | Magnetic Resonance Imaging (MRI) | August 29, 2019
A notable increase in the prevalence of chronic diseases has led to a surge in sales of high-end diagnostic machines,...
Delaware Imaging Network Now Offers NeuroQuant Brain Imaging MRI Software
News | Neuro Imaging | August 29, 2019
Delaware Imaging Network (DIN), Delaware’s largest network of outpatient medical imaging centers, has added NeuroQuant...
Displacement comparison at the end-systolic frame and final frame

Displacement comparison at the end-systolic frame and final frame. The three patients (V6, V10, V16) with different left-ventricle walls are shown. Point-to-surface distance is a measure to estimate the distance of a point from the reference surface. Image courtesy of WMG, University of Warwick

News | Cardiac Imaging | August 28, 2019
A new 3-D magnetic resonance imaging (MRI) computing technique developed by scientists in WMG at the University of...
Smoldering Spots in the Brain May Signal Severe MS

NIH researchers found that dark rimmed spots representing ongoing, “smoldering” inflammation, may be a hallmark of more disabling forms of multiple sclerosis. Image courtesy of Reich lab, NIH/NINDS.

News | Neuro Imaging | August 22, 2019
Aided by a high-powered brain scanner and a 3-D printer, National Institutes of Health (NIH) researchers peered inside...
Vaping Impairs Vascular Function

Image courtesy of the American Heart Association

News | Magnetic Resonance Imaging (MRI) | August 21, 2019
Inhaling a vaporized liquid solution through an e-cigarette, otherwise known as vaping, immediately impacts vascular...