Feature | April 20, 2015 | Dave Fornell

Managing Dose in PET and SPECT Myocardial Perfusion Imaging

New technologies and stress-only imaging can help cut nuclear imaging dose rates below 10 mSv

UltraSPECT, dose management, lower dose SPECT

UltraSPECT's image reconstruction software can be used on older SPECT systems to allow lower-dose imaging. This is an example of the software's imaging capability using between 30-50 percent less dose.

GE, CZT, Discovery NM 570c

The GE Discovery NM 570C uses newer CZT cameras, which directly transfer photon detections into digital signals, rather than using traditional photomultiplier tubes. The more efficient transfer of image data allows lower tracer doses to be used.

<p>Nuclear myocardial perfusion imaging (MPI) with positron emission tomography (PET) and single-photon emission computed tomography (SPECT) have been the gold standard for noninvasive detection of coronary ischemia and infarcts. However, the high radiation doses patients receive are making some providers think twice before referring their patients for nuclear MPI.</p>

<p>Public concern over radiation risks from medical imaging have been brought to the forefront with numerous mainstream media articles in recent years. Newer dose lowering technologies have helped reduce radiation dose by more than 50 percent for cardiac computed tomography angiography (CTA) scans, making it much more attractive as a diagnostic imaging modality. New CT technology — including perfusion imaging with advanced visualization software and CT-fractional flow reserve (FFR) imaging, recently cleared by the U.S. Food and Drug Administration (FDA) — may lead to increased use of CT.</p>

<p>When 64-slice scanners were first introduced nearly 10 years ago, CTA dose was 20-30 mSv, but new reconstruction software, more sensitive detectors and other technologies have reduced this below 10 mSv. With the newest scanners and software, it is now possible to perform CTA with about 1 mSv of dose. This new dose profile has made CTA much more attractive, and nuclear imaging now finds itself in the position as the high radiation dose technology being called into question.</p>

<div>&nbsp;</div>

<div>The average background radiation dose in 1985 was around 3.5 mSv, but this has risen to about 6.1 mSv in 2015, due to the expanded use of medical imaging, said Gary Heller, M.D., Ph.D., FACC, FASNC, consultant to nuclear cardiology at Morristown Medical Center, New Jersey. He said nuclear imaging and CT account for the majority of this rise in patient exposure. The American Society of Nuclear Cardiology (ASNC), of which Heller is past-president, recognized this trend and created guidelines in 2010 to achieve the goal of doses of 9 mSv or below using Tc99m. He cited several advances to help achieve this goal.</div>

<div>&nbsp;</div>

<div><strong>Ways to Reduce Nuclear Imaging Dose</strong></div>

<div>A Tc-99m SPECT scan averages about 12-16 mSv, and dual isotope studies can be as high as 25-30 mSv, said John Mahmarian, M.D., FACC, FASNC, FSCCT, Weill Cornell Medical College, Houston, Texas. Speaking at a Houston Methodist DeBakey Heart and Vascular Center evening symposium during the 2015 American College of Cardiology (ACC) meeting in March, he recommended several ways to help reduce dose, including:</div>

<div>&nbsp;</div>

<div>• Following appropriate use criteria to eliminate exposure in patients who do not qualify for nuclear imaging &nbsp;&nbsp;</div>

<div>• Performing stress-only exams, and eliminating the dose from a rest exam</div>

<div>• Use of new cadmium zinc telluride (CZT) detectors</div>

<div>• Use of newer iterative reconstruction software to improve the diagnostic quality of low-dose exams&nbsp;</div>

<div>&nbsp;</div>

<div>“These can all reduce the amount of radiopharmaceuticals we use,” Mahmarian said.&nbsp;</div>

<div>&nbsp;</div>

<div>In a study of stress-only imaging conducted at his center, Mahmarian said they found no difference in patient outcomes compared to stress/rest exams. This also reduced the amount of radiotracer injected into the patient to reduce radiation levels by about 60 percent.&nbsp;</div>

<div>&nbsp;</div>

<div>“What is the holdup? — You do the stress-only test and you reduce the dose by 50 percent,” Mahmarian explained.&nbsp;</div>

<div>&nbsp;</div>

<div>Stress-only imaging does require you to assess each patient on arrival to choose the most appropriate patients, but the reduced dose is well worth it, said Faisal Nabi, M.D., FACC, Methodist DeBakey Heart and Vascular Center, assistant professor of medicine, Weill Cornell Medical College of Cornell University. Nabi spoke at another ACC.15 session on nuclear dose reduction and echoed Mahmarian's support for stress-only imaging.&nbsp;</div>

<div>&nbsp;</div>

<div>“Use of a stress-only protocol, especially with use of CZT detectors, will significantly reduce dose and help you reach dose goals set by the American Society of Nuclear Cardiology,” Nabi said.&nbsp;</div>

<div>&nbsp;</div>

<div>CZT detectors eliminate the traditional analog photomultiplier tubes and instead create a direct energy transfer of photons hitting the detector into electrical signals, which is more efficient and can greatly reduce the amount of radiotracer needed. CZT detectors are offered on systems from GE Healthcare (Discovery 570c SPECT/CT, Discovery 530c systems) and Spectrum Dynamics Medical (D-SPECT).&nbsp;</div>

<div>&nbsp;</div>

<div>Increasing detector speed and increasing the number of detector heads has enabled fast SPECT scanning. These systems can both greatly reduce scanning time and help reduce dose by using less injected isotope tracer. Heller said Digirad offers a triple-head system option and OESM reconstruction technology. The company said its Cardius 3 XPO triple-head system can help increase acquisition efficiency by about 38 percent. Other fast cameras include the Spectrum Dynamics D-SPECT system, which uses nine CZT cameras; GE Healthcare’s Discovery NM systems that use 19 CZT detectors; and CardiacArc’s HD-SPECT.&nbsp;</div>

<div>&nbsp;</div>

<div>Siemens' Biograph mCT Flow uses a continuous motion patient bed to eliminate additional CT dose. It eliminates the conventional step-and-shoot method, which requires overlap of the CT image area for each scan. Siemens said the system can help eliminate up to 32 percent of the CT dose.</div>

<div>&nbsp;</div>

<div><strong>Software to Help Lower Dose</strong></div>

<div>Heller echoed the use of stress-only imaging protocols and more sensitive detector technology on newer scanners, but also said image reconstruction software has a big role to play. In the past, the higher the radiation dose used in CT or nuclear imaging, the better the image quality. However, in recent years, with rising concerns about radiation dose levels, imaging system vendors have developed iterative reconstruction software to improve the image quality of lower-dose scans. All the major imaging system vendors now offer this technology on their PET, SPECT and CT scanners to help lower dose levels by 30-50 percent.</div>

<div>&nbsp;</div>

<div>The standard reconstruction software for nuclear imaging has been filtered-back projection (FBP), but two newer types have now entered the market that can lower the dose needed to create diagnostic-quality images. These include wide beam reconstruction (WBR) and ordered subset expectation maximization (OSEM). Both of these techniques can be used to enable half-time SPECT imaging. OSEM&nbsp;<span style="font-size:12px">is an iterative, mathematical algorithm for image reconstruction. The advantage of OSEM reconstruction over traditional FBP is more accurate imaging models that include scatter correction. This allows for higher-resolution images with fewer counts. </span></div>

<div>&nbsp;</div>

<div>Third-party vendor UltraSPECT also offers WBR software to enable lower dose scans on older SPECT systems. Heller said the software can be fitted on 99 percent of existing systems still in use for SPECT imaging, provided the gamma cameras are DICOM-compliant. He said some older systems may require a computer upgrade to enable use of the software. UltraSPECT said its Xpress3.Cardiac solution can enable nuclear exams to be performed with 50 percent reduction in both dose and procedure time.</div>

<div>&nbsp;</div>

<div><strong>Lowering Dose With PET</strong></div>

<div>Although PET tracers are higher energy, Heller said the much shorter half-life compared to SPECT translates into lower patient dose. He explained PET dose for perfusion imaging can be lowered further with the use of stress-only PET imaging protocols in the future if the FDA approves single-dose agents. Heller said the lead candidate in this area is Lantheus’ Flurpiridaz F-18 agent, which is currently in Phase III trials.</div>

<div>&nbsp;</div>

<div>The first digital detector PET system was introduced in 2013. The Philips Vereos PET/CT uses digital silicon photomultiplier detectors instead of traditional analog detectors, reportedly doubling the sensitivity gain, volumetric resolution and quantitative accuracy over that of analog systems.&nbsp;</div>

<div>&nbsp;</div>

<div>GE Healthcare’s Q.Clear PET/CT system Q.Clear PET iterative reconstruction offers quantitation and image quality. GE said current PET iterative reconstruction methods, such as time of flight (TOF) and OSEM, force a compromise between image quality and quantitation, but its new system allows both for enhanced image quality.</div>

<div>&nbsp;</div>

 

Related Content

(a) A schematic of cycloidal computed tomography (not to scale, seen from top); by adding an array of beam stops in front of the detector, the setup is transformed into an edge-illumination x-ray phase-contrast imaging device. (b) A sinogram sampling grid for a rotation-only scheme. (c) A sinogram sampling grid for a cycloidal scheme. The grids are shown for one mask period and a subset of rotation angles; the combination of empty and filled circles shows the grids that would be achieved through fine latera

(a) A schematic of cycloidal computed tomography (not to scale, seen from top); by adding an array of beam stops in front of the detector, the setup is transformed into an edge-illumination x-ray phase-contrast imaging device. (b) A sinogram sampling grid for a rotation-only scheme. (c) A sinogram sampling grid for a cycloidal scheme. The grids are shown for one mask period and a subset of rotation angles; the combination of empty and filled circles shows the grids that would be achieved through fine lateral sampling (requiring dithering); the filled circles show the data that are sampled without dithering.

News | Computed Tomography (CT) | July 24, 2020
July 24, 2020 — A computed tomography (CT) sca
In I-131 cancer therapy, decay events damage sensitive DNA within a tumor cell nucleus, causing catastrophic single and double strand breaks. Clinical use of antibody-delivered Auger emitters could open a window for the targeted destruction of extracellular COVID-19 virions, decreasing the viral load during active infection and potentially easing the disease burden for a patient. View all figures from this study.  http://jnm.snmjournals.org/content/early/2020/07/16/jnumed.120.249748.full.pdf+html

In I-131 cancer therapy, decay events damage sensitive DNA within a tumor cell nucleus, causing catastrophic single and double strand breaks. Clinical use of antibody-delivered Auger emitters could open a window for the targeted destruction of extracellular COVID-19 virions, decreasing the viral load during active infection and potentially easing the disease burden for a patient. View all figures from this study.

 

News | Coronavirus (COVID-19) | July 22, 2020 | Dave Fornell, Editor
July 22, 2020 — One of the first studies has been published that looks at the use of...
Tau (blue) and amyloid (orange) distribution patterns for super-agers, normal-agers and MCI patients, when compared to a group of younger, healthy, cognitively normal, amyloid-negative individuals. Brain projections are depicted at an uncorrected significance level of p < .0001. Color bars represent the respective t-statistic. Image courtesy of Merle C. Hoenig, Institute for Neuroscience and Medicine II - Molecular Organization of the Brain, Research Center Juelich, Juelich, Germany, and Department of Nucle

Tau (blue) and amyloid (orange) distribution patterns for super-agers, normal-agers and MCI patients, when compared to a group of younger, healthy, cognitively normal, amyloid-negative individuals. Brain projections are depicted at an uncorrected significance level of p < .0001. Color bars represent the respective t-statistic. Image courtesy of Merle C. Hoenig, Institute for Neuroscience and Medicine II - Molecular Organization of the Brain, Research Center Juelich, Juelich, Germany, and Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany.

News | PET Imaging | July 16, 2020
July 16, 2020 — Super-agers, or individuals whose cognitive skills are above the norm even at an advanced age, have b
PSMA PET/CT accurately detects recurrent prostate cancer in 67-year-old man. 18F-DCFPyL-PSMA PET/CT shows extensive, intensely PSMA-avid local recurrence in prostate (bottom row; solid arrow) in keeping with the known tumor recurrence in the prostate. Right: PET shows extensive, intensely PSMA-avid local recurrence in prostate (top row; solid arrow) and a solitary bone metastasis in left rib 2 (bottom row; dotted arrow). Image courtesy of Ur Metser, et al.

PSMA PET/CT accurately detects recurrent prostate cancer in 67-year-old man. 18F-DCFPyL-PSMA PET/CT shows extensive, intensely PSMA-avid local recurrence in prostate (bottom row; solid arrow) in keeping with the known tumor recurrence in the prostate. Right: PET shows extensive, intensely PSMA-avid local recurrence in prostate (top row; solid arrow) and a solitary bone metastasis in left rib 2 (bottom row; dotted arrow). Image courtesy of Ur Metser, et al.

News | PET-CT | July 16, 2020
July 16, 2020 — New research confirms the high impact of...
Total-body dynamic 18F-FDG PET imaging with the uEXPLORER scanner allows us to monitor the spatiotemporal distribution of glucose concentration in metastatic tumors in the entire body (a). As compared to a typical clinical standardized uptake value image (b), the parametric image of FDG influx rate (Ki) can achieve higher lesion-to-background (e.g., the liver) contrast. In addition to glucose metabolism imaging by Ki, total-body dynamic PET also enables multiparametric characterization of tumors and organs

Total-body dynamic 18F-FDG PET imaging with the uEXPLORER scanner allows us to monitor the spatiotemporal distribution of glucose concentration in metastatic tumors in the entire body (a). As compared to a typical clinical standardized uptake value image (b), the parametric image of FDG influx rate (Ki) can achieve higher lesion-to-background (e.g., the liver) contrast. In addition to glucose metabolism imaging by Ki, total-body dynamic PET also enables multiparametric characterization of tumors and organs using additional physiologically important parameters, for example, glucose transport rate K1 (d), across the entire body. Image courtesy of G.B. Wang, M. Parikh, L. Nardo, et al., University of California Davis, Calif.

News | PET Imaging | July 16, 2020
July 16, 2020 — Results from the first...
Representative maximum-intensity projection PET images of a healthy human volunteer injected with 64Cu-NOTA-EB-RGD at 1, 8, and 24 hours after injection. Axial MRI and PET slices of glioblastoma patient injected with 64Cu-NOTA-EB-RGD at different time points after injection. Image courtesy of Jingjing Zhang et al., Peking Union Medical College Hospital, Beijing, China/ Xiaoyuan Chen et al., Laboratory of Molecular Imaging and Nanomedicine, NIBIB/NIH, Bethesda, USA

Representative maximum-intensity projection PET images of a healthy human volunteer injected with 64Cu-NOTA-EB-RGD at 1, 8, and 24 hours after injection. Axial MRI and PET slices of glioblastoma patient injected with 64Cu-NOTA-EB-RGD at different time points after injection. Image courtesy of Jingjing Zhang et al., Peking Union Medical College Hospital, Beijing, China/ Xiaoyuan Chen et al., Laboratory of Molecular Imaging and Nanomedicine, NIBIB/NIH, Bethesda, USA

News | PET Imaging | July 15, 2020
July 15, 2020 — A first-in-human study presented at the Society of...
PET/CT imaging showing uptake and retention of 86Y-NM600 (imaging agent) in immunocompetent mice bearing prostate tumors. PET imaging data was employed to estimate tumor dosimetry and prescribe an immunomodulatory 90Y-NM600 (therapy agent) injected activity. Image courtesy of R Hernandez et al., University of Wisconsin-Madison, WI.

PET/CT imaging showing uptake and retention of 86Y-NM600 (imaging agent) in immunocompetent mice bearing prostate tumors. PET imaging data was employed to estimate tumor dosimetry and prescribe an immunomodulatory 90Y-NM600 (therapy agent) injected activity. Image courtesy of R Hernandez et al., University of Wisconsin-Madison, WI.

News | PET-CT | July 15, 2020
July 15, 2020 — ...
Adult male with decades of right neck pain, discomfort and tightening following birth injury. The patient had failed multiple standard therapeutic maneuvers before presenting for 18F-FDG PET/MR imaging. Images shows abnormally elevated FDG uptake (white arrows; SUVmax = 1.2) observed in a linear pattern in the space in the posterolateral right neck, between the oblique capitis inferior and the semispinalis capitis muscles, where the greater occipital nerve resides. By comparison, the same region on the cont

Adult male with decades of right neck pain, discomfort and tightening following birth injury. The patient had failed multiple standard therapeutic maneuvers before presenting for 18F-FDG PET/MR imaging. Images shows abnormally elevated FDG uptake (white arrows; SUVmax = 1.2) observed in a linear pattern in the space in the posterolateral right neck, between the oblique capitis inferior and the semispinalis capitis muscles, where the greater occipital nerve resides. By comparison, the same region on the contralateral, asymptomatic side of the neck has an SUVmax = 0.7. This result encouraged a surgeon to explore the area. The surgeon ultimately found a collection of small arteries wrapped around the nerve in this location. The small arteries underwent lysis by the surgeon and the patient reported tremendous relief of symptoms. (A) Coronal thick slab MIP of 18F-FDG PET. (B) Axial LAVA FLEX MRI through the cervical spine. (C) Axial PET at the same slice as the axial MRI. (D) Fused axial PET/MRI. Image courtesy of Cipriano, et al., Stanford University, CA.

News | SNMMI | July 14, 2020
July 14, 2020 — A new molecular imaging approach utilizing 18F-FDG...
Left: Total-body PET/CT in psoriatic arthritis: multiple joints affected, shoulders, elbows, wrists, knees, ankles and small joints of the hands/feet. Arrow: left wrist; arrowhead: right wrist. Middle: Total-body PET/CT in rheumatoid arthritis: multiple joints affected, right shoulder, small joints of the left hand. Arrowhead at the 4th proximal interphalangeal joint shows classic ring-like uptake pattern. Arrow on the foot images demonstrates the hammer toe deformity besides big toe arthritis. Right: Total

Left: Total-body PET/CT in psoriatic arthritis: multiple joints affected, shoulders, elbows, wrists, knees, ankles and small joints of the hands/feet. Arrow: left wrist; arrowhead: right wrist. Middle: Total-body PET/CT in rheumatoid arthritis: multiple joints affected, right shoulder, small joints of the left hand. Arrowhead at the 4th proximal interphalangeal joint shows classic ring-like uptake pattern. Arrow on the foot images demonstrates the hammer toe deformity besides big toe arthritis. Right: Total-body PET/CT in osteoarthritis: affected joints include the left elbow, right knee (arrow) and right big toe (arrowhead). Image courtesy of YG Abdelhafez et al., University of California Davis, Sacramento, CA.

News | SNMMI | July 14, 2020
July 14, 2020 — For the first time, physicians can examine the systemic burden of inflammatory arthritis simultaneous