Feature | Artificial Intelligence | December 02, 2020

AI Measured Abdominal Fat Accurately Predicts Heart Attack and Stroke Risk

Study of 12,128 patients over 5 years showed automated AI measurement of visceral fat area on abdominal CT images predicts future heart attack or stroke risk better than overall weight or BMI

An example of a body composition analysis of an abdominal CT slice with the subcutaneous fat in green, skeletal muscle red and visceral fat in yellow. This was automatically identified and analyzed via a deep learning algorithm to assess the risk for heart attack and stroke in more than 12,000 patients. #RSNA2020 #RSNA20 #RSNA

An example of a body composition analysis of an abdominal CT slice with the subcutaneous fat in green, skeletal muscle red and visceral fat in yellow. This was automatically identified and analyzed via a deep learning algorithm to assess the risk for heart attack and stroke in more than 12,000 patients.

December 2, 2020 – Automated deep learning analysis of abdominal computed tomography (CT) images produces a more precise measurement of body composition and predicts major cardiovascular events, such as heart attack and stroke, better than overall weight or body mass index (BMI), according to a study presented today at the 2020 Radiological Society of North America (RSNA) virtual meeting.

“Established cardiovascular risk models rely on factors like weight and BMI that are crude surrogates of body composition,” said Kirti Magudia, M.D., Ph.D., an abdominal imaging and ultrasound fellow at the University of California San Francisco. “It’s well established that people with the same BMI can have markedly different proportions of muscle and fat. These differences are important for a variety of health outcomes.”

Unlike BMI, which is based on height and weight, a single axial CT slice of the abdomen visualizes the volume of subcutaneous fat area, visceral fat area and skeletal muscle area. However, manually measuring these individual areas is time intensive and costly.

As a radiology resident at Brigham and Women’s Hospital in Boston, Magudia was part of a multidisciplinary team of researchers, including radiologists, a data scientist and biostatistician, who developed a fully automated method using deep learning — a type of artificial intelligence (AI) — to determine body composition metrics from abdominal CT images.

“Abdominal CT scans that are routinely performed provide a more granular way of looking at body composition, but we’re not currently taking advantage of it,” Magudia said.

The study cohort was derived from the 33,182 abdominal CT outpatient exams performed on 23,136 patients at Partners Healthcare in Boston in 2012. The researchers identified 12,128 patients who were free of major cardiovascular and cancer diagnoses at the time of imaging. Mean age of the patients was 52 years, and 57% of patients were women.

The researchers selected the L3 CT slice (from the third lumbar spine vertebra) and calculated body composition areas for each patient. Patients were then divided into four quartiles based on the normalized values of subcutaneous fat area, visceral fat area and skeletal muscle area.

In this retrospective study, it was determined which of these 12,128 patients had a myocardial infarction (heart attack) or stroke within five years after their index abdominal CT scan. The researchers found 1,560 myocardial infarctions and 938 strokes occurred in this study group.

Statistical analysis demonstrated that visceral fat area was independently associated with future heart attack and stroke. BMI was not associated with heart attack or stroke.

“The group of patients with the highest proportion of visceral fat area were more likely to have a heart attack, even when adjusted for known cardiovascular risk factors,” Magudia said. “The group of patients with the lowest amount of visceral fat area were protected against stroke in the years following the abdominal CT exam.”

“These results demonstrate that precise measures of body muscle and fat compartments achieved through CT outperform traditional biomarkers for predicting risk for cardiovascular outcomes,” she added.

According to Magudia, this work demonstrates that fully automated and normalized body composition analysis could now be applied to large-scale research projects.

“This work shows the promise of AI systems to add value to clinical care by extracting new information from existing imaging data,” Magudia said. “The deployment of AI systems would allow radiologists, cardiologists and primary care doctors to provide better care to patients at minimal incremental cost to the health care system.”

This paper is the recipient of an RSNA 2020 Trainee Research Prize.

Co-authors are Christopher P. Bridge, D.Phil., Camden P. Bay, Ph.D., Florian J. Fintelmann, M.D., Ana Babic, Ph.D., Katherine P. Andriole, Ph.D., Brian M. Wolpin, M.D., and Michael H. Rosenthal, M.D., Ph.D.

Watch the RSNA presentation of this study in the VIDEO: Deep Learning Analysis of Abdominal Fat to Assess Heart Attack and Stroke Risk.
 

 

Find more cardiology related RSNA news

Find radiology related RSNA News

Related Content

Accuray Incorporated announced the company has received CE Mark certification for its ClearRT helical fan-beam kVCT imaging capability.
News | Radiation Therapy | June 11, 2021
June 11, 2021 — Accuray Incorporated announced the company has received CE Mark certification for its...
The new X-ray scanner can provide detailed information about the internal makeup of rocks, which could be useful for archaeologists studying fossils or miners making decisions about which ore to use in their extraction facilities. Image courtesy of Joel Greenberg, Duke University

The new X-ray scanner can provide detailed information about the internal makeup of rocks, which could be useful for archaeologists studying fossils or miners making decisions about which ore to use in their extraction facilities. Image courtesy of Joel Greenberg, Duke University

News | X-Ray | June 10, 2021
June 10, 2021 — Engineers at Duke University have demonstrated a prot
News | PET-CT | June 10, 2021
June 10, 2021 — Bringing the power of...
The U.S. Food and Drug Administration (#FDA) approved #Aduhelm (#aducanumab) for the treatment of #Alzheimer’s, a debilitating disease affecting 6.2 million Americans. Aduhelm was approved using the accelerated approval pathway, which can be used for a drug for a serious or life-threatening illness that provides a meaningful therapeutic advantage over existing treatments.

Getty Images

News | PET Imaging | June 07, 2021
June 7, 2021 — The U.S.
Cina Chest is part of Avicenna’s CINA family of AI tools that support the treatment of emergencies, including CINA HEAD, its FDA-cleared and CE-Marked solution that supports the detection and triage of stroke and neurovascular emergencies.
News | Artificial Intelligence | June 03, 2021
June 3, 2021 — Medical imaging AI specialist Avicenna.AI announced
Chest X-rays used in the COVID-Net study show differing infection extent and opacity in the lungs of COVID-19 patients. Image courtesy of University of Waterloo

Chest X-rays used in the COVID-Net study show differing infection extent and opacity in the lungs of COVID-19 patients. Image courtesy of University of Waterloo

News | Coronavirus (COVID-19) | June 03, 2021
June 3, 2021 — Artificial intelligence
An example of how spectral CT can help aid diagnosis in a pancreatic CT which may have a small lesion, but it is difficult to see. The dual-energy imaging clearly shows a lesion. This is example is from the Philips Spectral CT 7500 system.

An example of how spectral CT can help aid diagnosis in a pancreatic CT which may have a small lesion, but it is difficult to see. The dual-energy imaging clearly shows a lesion. This is example is from the Philips Spectral CT 7500 system.

Feature | Computed Tomography (CT) | May 27, 2021 | By Dave Fornell, Editor
May 27, 2021 — Philips Healthcare released a workhorse...
Feature | Coronavirus (COVID-19) | May 26, 2021 | By Dave Fornell, Editor
May 26, 2021 — There are increasing reports of persistent symptoms after a patient recovers from...
International medical imaging IT and cybersecurity company Sectra will install its solution for digital pathology at Institut Curie, one of the most recognized and prestigious cancer centers in France.
News | Enterprise Imaging | May 24, 2021
May 24, 2021 — International medical imaging IT and cybersecurity company ...