Feature | Radiation Oncology | February 01, 2017 | By Rachael Bennett, BHS, R.T.(R)(T)

Advances in Radiation Oncology

The radiation oncology market continues to progress, with new advancements such as the increased availability of proton therapy and the eagerly awaited MRI-guided linear accelerator

oncology analytics

Mosaiq Oncology Analytics is a cloud-based solution that integrates with multiple systems, so the user can leverage the information within and beyond the oncology department.

MRI-guided radiation treatment delivery

The historic ViewRay MRIdian system was the world’s first FDA-cleared MRI-guided radiation treatment delivery system capable of image acquisition and treatment at the same time.

High Definition Radiotherapy (HDRT)

With Varian HyperArc High Definition Radiotherapy (HDRT) technology clinicians should be able to deliver more compact radiation doses that closely conform to the size, shape and location of tumors, while sparing more surrounding healthy tissue.

radiation oncology, analytics

Varian’s InSightive Analytics provides insight into opportunities for clinical, operational and financial improvement.

In 2016, the America Cancer Society expected 1,685,210 new cancer diagnoses in the United States alone. And according to the National Cancer Institute, approximately half of all patients diagnosed with cancer will undergo radiation therapy as part of their treatment plan. Given the large number of patients turning to radiation oncology, it is no wonder there is an immense focus on continually advancing this treatment technique. Millions of lives depend upon it.

The basic goal of radiation therapy is to cause damage to the cells where the cancer is located. Healthy cells are able to repair themselves; unhealthy cancer cells, on the other hand, are unable to do so. The result is death of the cancer cells. 

Over the years, radiation treatment techniques have continually focused on sparing healthy surrounding tissue while maximizing the radiation dose to the cancer cells. Treatments have become even more precise with the help of motion management tools and image guidance treatment techniques. While these are all great advancements in the treatment of cancer, the world of radiation therapy now has even more to be excited about. 

 

Analytics Tools

There has always been a lot of useful information captured through daily activities within a radiation oncology department, but accessing this data in a meaningful fashion could be quite a task. Vendors are now finding ways to compile and format this information into actionable reports. Tools available through applications such as Elekta’s Mosaiq Oncology Analytics and Varian’s InSightive Analytics provide insight into opportunities for clinical, operational and financial improvement. Among numerous other capabilities, these enhancements include the ability to oversee resource utilization and workflow, pinpoint specific areas for cost reduction and ensure consistent quality care across a network of facilities. Information obtained from analytics tools also provides documentation to validate improvement within a department.

 

Advancements in Linear Accelerator Technology

Traditional linear accelerators (linacs) have come a long way since Rolf Wideroe created the linear accelerator concept in 1927. Advancements over the years have allowed linacs to provide radiation treatments with millimeter accuracy. The majority of linear accelerators available today are so advanced that they have at least some form of optional stereotactic radiosurgery (SRS) capabilities.

In June 2016 Accuray announced that it had received U.S. Food and Drug Administration (FDA) clearance of its Radixact Treatment Delivery Platform. Along with this system, Accuray also introduced its new oncology information system, the iDMS Data Management System, as well as its new Accuray Precision Treatment Planning System. Building on the TomoTherapy line of products, the Radixact system incorporates a more powerful linear accelerator that allows treatments of up to 1,000 MU per minute, providing improvements to treatment speed and efficiency. The integrated iDMS Data Management System and Accuray Precision Treatment Planning System further improve the treatment process by streamlining workflow and reducing the time required to create treatment plans.

At the 2016 American Society of Radiation Oncology (ASTRO) annual meeting, Varian Medical Systems introduced its HyperArc High Definition Radiotherapy Technology (HDRT). Key benefits of this technology include the ability to offer radiosurgery to a broader range of patients as well as provide improved quality of treatments. Varian’s hope is that this technology will increase access to radiosurgical procedures. HyperArc HDRT is specifically designed for Varian’s TrueBeam or EDGE treatment delivery systems in conjunction with its PerfectPitch six degrees of freedom (6-DoF) couch. Pending U.S. Food and Drug Administration (FDA) 510(k) clearance, a September 2016 press release stated that Varian anticipates this technology will be available sometime in 2017.

 

Related Content

NVIDIA Explores Role of AI, Analytics and Virtualization in Healthcare at HIMSS19
News | Artificial Intelligence | February 13, 2019
Digital technology company NVIDIA will highlight its newest partnerships to advance the digital transformation of...
Hologic Launches Unifi Analytics Business Intelligence Tool
Technology | Analytics Software | February 12, 2019
Hologic Inc. announced the U.S. launch of Unifi Analytics, a business intelligence tool that allows healthcare...
An example of Philips' TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal.

An example of Philips' TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal. 

Feature | Ultrasound Imaging | February 07, 2019 | Dave Fornell, Editor
Here is a list of six key trends in ul...
Podcast | Cybersecurity | February 04, 2019
Cyber hackers pose a worsening threat to radiology and the rest of medical imaging.
The top article from January was about researchers in Sweden using computed tomography (CT) to image the soft tissue of an ancient Egyptian mummy’s hand down to a microscopic level. Non-destructive imaging of human and animal mummies with X-rays and CT has been a boon to the fields of archaeology and paleopathology. Most popular radiology articles and news in January 2019.

The top article from January was about researchers in Sweden using computed tomography (CT) to image the soft tissue of an ancient Egyptian mummy’s hand down to a microscopic level. Non-destructive imaging of human and animal mummies with X-rays and CT has been a boon to the fields of archaeology and paleopathology.

Feature | February 01, 2019 | A.J. Connell and Dave Fornell
February 1, 2019 — Here is the list of the most popular content on the Imaging Technology News (ITN) magazine website
Laurent Levy, CEO of Nanobiotix, explains the use of his company’s nanoparticles to enhance the radiation sensitivity of tumor tissue to improve patient outcomes

Laurent Levy, CEO of Nanobiotix, explains the use of his company’s nanoparticles to enhance the radiation sensitivity of tumor tissue to improve patient outcomes. The metallic-based nanoparticles show up on CT scans so it can be used as a permanent fiduciary marker to track tumor response. The images show the initial tumor and enhancement areas due to the nanoparticles and the resulting outcomes following treatment. Photo by Dave Fornell

Feature | Radiation Oncology | January 30, 2019 | By Dave Fornell
Artificial intelligence (AI) has been the hot topic discussed at all trade shows, and the...
In today’s digital environment, a radiologist only sees images saved and shared to the PACS, so a firm understanding of X-ray reject rates is crucial for high image quality and good workflow.

In today’s digital environment, a radiologist only sees images saved and shared to the PACS, so a firm understanding of X-ray reject rates is crucial for high image quality and good workflow.

Feature | Digital Radiography (DR) | January 29, 2019 | By Jeff Zagoudis
X-rays were the first medical imaging technology to be invented, and they remain one of the most commonly performed e
NewYork-Presbyterian Hospital Partners With Philips for Health IT and Clinical Informatics
News | Enterprise Imaging | January 16, 2019
Philips announced that NewYork-Presbyterian Hospital has chosen to implement the company’s IntelliSpace Enterprise...
Artificial intelligence, also called deep learning and machine learning, was the hottest topic at the 2018 Radiological Society of North America (RSNA)) meeting.

Artificial intelligence was the hottest topic at the 2018 Radiological Society of North America (RSNA)) meeting, which included a large area with its own presentation therater set asside for AI vendors.

Feature | Artificial Intelligence | January 10, 2019 | Dave Fornell, Editor
Hands down, the hottest topic in radiology the past two years has been the implementation of...
Videos | Artificial Intelligence | December 18, 2018
Radiological Society of North America (RSNA) 2018 annual meeting keynote speaker Michael Recht, M.D., chairman of rad