Feature | January 27, 2015

3-D Printed Tissue Offers Viable Option for Tracheal Reconstruction

Printed material can be combined with patient’s own cells for customized tissue segments

3-D printing, tracheal reconstruction, STS, Goldstein, Feinstein Institute

Daniel A. Grande, Ph.D., director of the orthopedic research laboratory at the Feinstein Institute, and Todd Goldstein, an investigator at the Feinstein Institute, part of the North Shore-LIJ Health System, with their MakerBot Replicator desktop 3-D printer that they used to 3-D print cartilage to repair tracheal damage.

January 27, 2015 — Three-dimensional (3-D) printing can effectively create a biodegradable tracheal segment containing a patient’s own cells for use in complex tracheal reconstruction, according to a proof of concept study abstract released at the 51st Annual Meeting of The Society of Thoracic Surgeons.

Traditional treatments for tracheal diseases such as stenosis or malacia (abnormal softening of the tissue) usually involve removal of the affected tracheal segment.

“Three-dimensional printing and tissue engineering has the potential for creation of a custom-designed tracheal replacement prosthesis in the lab so that the affected tracheal segment can be ‘swapped out’ instead of removed,” said lead author Todd Goldstein, Ph.D., of the Feinstein Institute for Medical Research, part of the North Shore-LIJ Health System in New York. “Making a windpipe or trachea is uncharted territory. It has to be rigid enough to withstand coughs, sneezes and other shifts in pressure, yet flexible enough to allow the neck to move freely. With 3-D printing, we were able to construct 3-D printed scaffolding that the surgeons could immediately examine and then we could work together in real time to modify the designs.”

Goldstein and colleagues used a custom-designed MakerBot Replicator 2X Experimental 3-D printer that had been modified by engineers to enable printing of living cells. The printer produces a biodegradable scaffold that can be combined with living cells to create a tracheal segment. The size and shape of the scaffold can be customized for each patient. This is a first for medical research where regular MakerBot PLA Filament was used to 3-D print a custom tracheal scaffolding, which was combined with living cells to create a tracheal segment.

“MakerBot was extremely helpful and consulted on optimizing our design files so they would print better and provided advice on how to modify the MakerBot Replicator 2X Experimental 3-D Printer to print with PLA and the biomaterial,” said Goldstein. “We actually found designs to modify the printer on MakerBot’s Thingiverse website to print PLA with one extruder and the biomaterial with the other extruder. We 3-D-printed the needed parts with our other MakerBot Replicator Desktop 3-D Printer, and used them to modify the MakerBot Replicator 2X Experimental 3-D Printer so that we could better iterate and test our ideas.”

For their study, the researchers made three types of printed segments: empty segments, segments without cells (controls) and segments that had been combined with living cells. The bio-printed cells were tested for viability, proliferation (cell growth and division) and gene expression. The researchers found that the cells survived the printing process, were able to continue dividing and produced the cellular properties expected in healthy tracheal cartilage.

“Our results show that three-dimensional printing can be combined with tissue engineering to effectively produce a partial tracheal replacement graft in vitro,” said Goldstein. “Our data demonstrate that the cartilage cells seeded on the graft retain their biological capability and were able to proliferate at the same rate as native cells.”

The authors said that 3-D printing has the potential to revolutionize medicine; patients are already seeing benefits from the technology in the area of customized prosthetics for limb replacement. Reconstructive craniofacial and cardiothoracic surgeons also have been using 3-D printers to build models for more precise surgical planning. 

“We think the next phase will be integrating three-dimensional printing and tissue engineering to produce customized biological replacement parts,” said Goldstein. “While further development is necessary before a clinical trial would be viable, our results show that 3-D printing technology is a feasible alternative to traditional treatments.”

3-D printed tissue is not yet approved by the U.S. Food and Drug Administration.

For more information: www.sts.org

Related Content

Intronix Technologies Developing Augmented Reality Medical Simulation for Neuromuscular Injection Procedures
News | Advanced Visualization | September 11, 2017
Canadian-based Intronix Technologies will be working with Roy Eagleson, Ph.D., professor in the Department of...
Median Technologies to Lead Roundtable on Applications of iBiopsy for Nonalcoholic Steatohepatitis
News | Advanced Visualization | September 07, 2017
September 7, 2017 — Median Technologies announced that it will lead a scientific and medical roundtable on Sept.
Carestream dose management
Sponsored Content | Whitepapers | Advanced Visualization | August 17, 2017
It's critical for today's healthcare professionals to understand the balance between the risks and benefits of any X-...
Carestream Launches MR Brain Perfusion and Diffusion Modules for Vue PACS
Technology | Advanced Visualization | August 16, 2017
Carestream Health recently introduced new MR (magnetic resonance) Brain Perfusion and MR Brain Diffusion modules that...
CDN to Integrate Advanced Cardiac Imaging Tools From DiA Imaging Analysis
Technology | Advanced Visualization | August 10, 2017
August 10, 2017 — CDN recently announced a new partnership agreement with DiA Imaging Analysis Ltd., makers of next-g
GE Additive and Stryker Announce Additive Manufacturing Partnership
News | 3-D Printing | July 06, 2017
July 6, 2017 — GE Additive and Stryker have entered a partnership agreement to support Stryker’s growth in...
Philips Receives FDA 510(k) Clearance for IntelliSpace Portal 9.0
Technology | Advanced Visualization | June 29, 2017
Philips announced it has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) to market...
Strain Imaging Improves Cardiac Surveillance of Certain Breast Cancer Patients
News | Cardio-oncology | May 03, 2017
Epsilon Imaging Inc. announced a research study using EchoInsight was presented at the American College of Cardiology (...
Fovia and Predible Health Combine XStream HDVR with Deep Learning to Fight Cancer
News | Advanced Visualization | April 25, 2017
Fovia Inc. and Predible Health announced a new collaboration to combine high-quality imaging performance and accuracy...
SyntheticMR Myelination Quantification Feature Receives CE Mark
News | Magnetic Resonance Imaging (MRI) | April 19, 2017
April 19, 2017 — REMyDI (Rapid Estimation of Myelin for Diagnostic Imaging), first introduced by SyntheticMR AB at th
Overlay Init