News | Artificial Intelligence | September 18, 2023

AI system by Lunit identified improperly positioned endotracheal tube on chest radiographs obtained after insertion, as well as on chest radiographs obtained from patients in the ICU at two institutions

AI system by Lunit identified improperly positioned endotracheal tube on chest radiographs obtained after insertion, as well as on chest radiographs obtained from patients in the ICU at two institutions

Left: Chest radiograph from 80-year-old patient in sample A. AI identified endotracheal tube (ETT) with probability score of 0.98, and properly localized tip of ETT (solid arrow). AI also identified tracheal carina with probability score of 0.99 and properly localized carina (open arrow). Based on pixel spacing information in DICOM data header, AI automatically measured absolute distance between ETT tip and tracheal carina (tip-to-carina distance, TCD) as 4.3 cm. AI also measured distance between ETT tip and carina along radiograph’s vertical axis of (y-axis tip-to-carina difference, TCDy) as 4.0 cm, indicating that ETT tip is located 4.0 cm above carina. ETT is in proper position based on TCD. Right: Chest radiograph from 77-year-old patient in sample A. ETT is in critical position, with tip located below tracheal carina. AI-derived TCD was 2.5 cm. AI-derived TCDy was -1.4 cm, indicating that ETT tip is located 1.4 cm below carina. Image courtesy of AJR 


September 18, 2023 — According to an accepted manuscript published in the American Journal of Roentgenology (AJR), an artificial intelligence (AI) system developed by Lunit (Seoul, Korea) identified improperly positioned endotracheal tube (ETTs) on chest radiographs obtained after ETT insertion, as well as on chest radiographs obtained from patients in the ICU at two institutions. 

“Automated AI identification of improper ETT position on chest radiograph may allow earlier repositioning and thereby reduce complications,” wrote corresponding author Eui Jin Hwang, MD, PhD, from the department of radiology at Korea’s Seoul National University Hospital

Hwang et al.’s retrospective AJR study included 539 chest radiographs obtained immediately after ETT insertion from January 1, 2020 to March 31, 2020 in 505 patients (293 men, 212 women; mean age, 63 years) from institution A (sample A); 637 chest radiographs obtained from January 1, 2020 to January 3, 2020 in 304 patients (158 men, 147 women; mean age, 63 years) in the ICU (with or without an ETT) from institution A (sample B); and 546 chest radiographs obtained from January 1, 2020 to January 20, 2020 in 83 patients (54 men, 29 women; mean age, 70 years) in the ICU (with or without an ETT) from institution B (sample C). Lunit’s commercial DL-based AI system was used to identify ETT presence and measure ETT tip-to-carina distance (TCD). Reference standard for proper ETT position was TCD between 3 cm and 7 cm, determined by human readers. Critical ETT position was separately defined as ETT tip below the carina or TCD less than or equal to 1 cm. 

Ultimately, in three patient samples from two different institutions, an AI system identified ETT presence with sensitivity of 99.2–100%; and specificity of 94.5–98.7%, improper ETT position with sensitivity of 72.5–83.7% and specificity of 92.0–100%, and critical ETT position with sensitivity of 100% in all samples and specificity of 96.7–100%. 

For more information: www.arrs.org


Related Content

News | Imaging Software Development

June 12, 2025 — GE HealthCare has announced the combination of GE HealthCare’s proprietary features and algorithms with ...

Time June 12, 2025
arrow
News | Digital Pathology

June 11, 2025 — Diagnostic laboratory leaders view digital pathology and artificial intelligence (AI) as pivotal to ...

Time June 12, 2025
arrow
News | Lung Imaging

June 11, 2025 — To prepare healthcare workforces and providers for an AI-driven future, Qure.ai has expanded its Global ...

Time June 11, 2025
arrow
News | Radiology Imaging

June 10, 2025 — CIVIE has announced the official launch of RadPod, an AI-driven, on-demand radiology platform designed ...

Time June 10, 2025
arrow
News | Ultrasound Imaging

June 4, 2025 — RadNet, Inc., a provider of high-quality, cost-effective diagnostic imaging services and digital health ...

Time June 09, 2025
arrow
News | Mammography

June 9, 2025 — A new independent, peer-reviewed study published in the journal Clinical Breast Cancer reinforces the ...

Time June 09, 2025
arrow
News | Imaging Software Development

June 05, 2025 — Nano-X Imaging Ltd. has announced that its deep-learning medical imaging analytics subsidiary, Nanox AI ...

Time June 05, 2025
arrow
News | Prostate Cancer

June 5, 2025 – Artera, the developer of multimodal artificial intelligence (MMAI)-based prognostic and predictive cancer ...

Time June 05, 2025
arrow
News | Ultrasound Imaging

June 3, 2025 — In a collaborative study between the Departments of Radiology at the Children’s Hospital of Philadelphia ...

Time June 04, 2025
arrow
News | Breast Imaging

June 2, 2025 — Clairity, Inc., a digital health innovator advancing AI-driven healthcare solutions, has received U.S ...

Time June 02, 2025
arrow
Subscribe Now