This study shows that thanks to deep learning analysis applied to digitized pathology slides, artificial intelligence can classify patients with localized breast cancer between high risk and low risk of metastatic relapse in the next five years.

Getty Images


September 22, 2021 — The RACE AI study conducted by Gustave Roussy and the startup Owkin, as part of the AI for Health Challenge organized by the Ile-de-France Region in 2019, was presented as a proffered paper at ESMO (European Society of Medical Oncology). This study shows that thanks to deep learning analysis applied to digitized pathology slides, artificial intelligence can classify patients with localized breast cancer between high risk and low risk of metastatic relapse in the next five years. This AI could thus become an aid to therapeutic decision making and avoid unnecessary chemotherapy and its impact on personal, professional and social lives for low risk women. This is one of the first proofs of concept illustrating the power of an artificial intelligence (AI) model for identifying parameters associated with relapse that the human brain could not detect.

With 59,000 new cases per year, breast cancer ranks first among cancers in women, clearly ahead of lung cancer and colorectal cancer. It is also the cancer that causes the greatest number of deaths in women, with 14% of female cancer deaths in 201880% of breast cancers are said to be hormone-sensitive or hormone-dependent. But these cancers are extremely heterogeneous and about 20% of patients will relapse with distant metastasis.

RACE AI is a retrospective study that was conducted on a cohort of 1,400 patients managed at Gustave-Roussy between 2005 and 2013 for localized hormone-sensitive (HR+, HER2-) breast cancer. These women were treated with surgery, radiotherapy, hormone therapy, and sometimes chemotherapy to reduce the risk of distant relapse. 

Chemotherapy is not routinely administered because not all women will benefit from it due to a naturally favorable prognosis. The practitioner's choice is based on clinico-pathological criteria (age of the patient, size and aggressiveness of the tumor, lymph node invasion, etc.) and the decision to administer or not adjuvant chemotherapy varies between oncology centers. Genomic signatures exist today to help identify women who benefit from chemotherapy, but they are not recommended by the French National Authority for Health and are not reimbursed by the French National Health Insurance (although they are included on the RIHN reimbursement list), which makes their access and use heterogeneous in France.

Gustave Roussy and Owkin have taken up the challenge of proposing a new method that is simple, inexpensive and easy to use in all oncology centers as a therapeutic decision-making tool. Ultimately, the goal is to direct patients identified as being at high risk towards new innovative therapies and to avoid unnecessary chemotherapy for low-risk patients.

In the RACE AI study, Owkin's Data Scientists, guided by Gustave Roussy's research physicians, developed an AI model capable of reliably assessing the risk of relapse with an AUC of 81% to help the practitioner determine the benefit/risk balance of chemotherapy. This calculation is based on the patient's clinical data combined with the analysis of stained and digitized histological slides of the tumor. These slides, used daily in pathology departments by anatomo-pathologists, contain very rich and decisive information for the management of cancer. It is not necessary to develop a new technique or to equip a specific technical platform. The only essential equipment is a slide scanner, which is a common piece of equipment in laboratories. Like an office scanner that digitizes text, this scanner digitizes the morphological information present on the slide.

The results of this first study by the Owkin and Gustave Roussy teams open up strong prospects and next steps include prospectively validating the model on an independent cohort of patients treated outside Gustave Roussy. If the results are confirmed, through providing reliable information to clinicians, this AI tool will prove to be a valuable aid to therapeutic decisions. 

For more information: www.gustaveroussy.fr/en


Related Content

News | Imaging Software Development

June 12, 2025 — GE HealthCare has announced the combination of GE HealthCare’s proprietary features and algorithms with ...

Time June 12, 2025
arrow
News | Digital Pathology

June 11, 2025 — Diagnostic laboratory leaders view digital pathology and artificial intelligence (AI) as pivotal to ...

Time June 12, 2025
arrow
News | Lung Imaging

June 11, 2025 — To prepare healthcare workforces and providers for an AI-driven future, Qure.ai has expanded its Global ...

Time June 11, 2025
arrow
News | Radiology Imaging

June 10, 2025 — CIVIE has announced the official launch of RadPod, an AI-driven, on-demand radiology platform designed ...

Time June 10, 2025
arrow
News | Ultrasound Imaging

June 4, 2025 — RadNet, Inc., a provider of high-quality, cost-effective diagnostic imaging services and digital health ...

Time June 09, 2025
arrow
News | Mammography

June 9, 2025 — A new independent, peer-reviewed study published in the journal Clinical Breast Cancer reinforces the ...

Time June 09, 2025
arrow
News | Imaging Software Development

June 05, 2025 — Nano-X Imaging Ltd. has announced that its deep-learning medical imaging analytics subsidiary, Nanox AI ...

Time June 05, 2025
arrow
News | Prostate Cancer

June 5, 2025 – Artera, the developer of multimodal artificial intelligence (MMAI)-based prognostic and predictive cancer ...

Time June 05, 2025
arrow
News | Ultrasound Imaging

June 3, 2025 — In a collaborative study between the Departments of Radiology at the Children’s Hospital of Philadelphia ...

Time June 04, 2025
arrow
News | Breast Imaging

June 2, 2025 — Clairity, Inc., a digital health innovator advancing AI-driven healthcare solutions, has received U.S ...

Time June 02, 2025
arrow
Subscribe Now