News | Coronavirus (COVID-19) | December 07, 2020

MBD2 serves as a viable target against pulmonary fibrosis by inhibiting macrophage M2 program

MBD2 serves as a viable target against pulmonary fibrosis by inhibiting macrophage M2 program #COVID19 #coronavirus

Getty Images


December 7, 2020 — An analysis of lung tissues from patients with different types of pulmonary fibrosis - including cases triggered by COVID-19 - has revealed a promising molecular target to ameliorate the chronic and irreversible disease. Experiments in mouse models of lung fibrosis showed that administering blockers of an epigenetic regulator called MBD2 via intratracheal inhalation protected the mice against fibrotic lung injury, highlighting a potential viable therapy. A poor understanding of what causes pulmonary fibrosis has greatly hindered the development of treatments, and to this day, no effective therapy is available other than lung transplantation. To tackle this limitation, Yi Wang and colleagues studied lung samples from patients with pulmonary fibrosis triggered by one of three causes: SARS-CoV-2 infection, systemic sclerosis-associated interstitial lung disease, or an unknown factor. The researchers also studied mouse models of pulmonary fibrosis, which they induced in the animals by administering the compound bleomycin. All cases of pulmonary fibrosis, they found, were characterized by overexpression of MBD2. This activity localized in areas occupied by macrophages - known contributors to the development of pulmonary fibrosis. To investigate this further, the scientists depleted the Mbd2 gene in macrophages of mice, which protected the animals against pulmonary fibrosis, characterized by markedly reduced macrophage accumulation in the lung following administration of bleomycin. As well, direct administration of liposomes - established carriers of inhaled drugs - loaded with Mbd2 silencer RNA into the trachea of mice protected them from lung injuries and fibrosis. Since MBD2 itself does not affect the essential epigenetic process of DNA methylation, inhibiting the molecule could prove to be a safe way to treat pulmonary fibrosis. However, future studies will first need to assess the impact of altered MBD2 expression in other types of cells relevant to pulmonary fibrosis, the authors say.

For more information: www.aaas.org


Related Content

News | X-Ray

Dec. 1, 2025 – Zwanger-Pesiri Radiology, one of the most respected and technologically advanced outpatient radiology ...

Time December 03, 2025
arrow
News | Interventional Radiology

Dec. 1, 2025 — GE HealthCare has unveiled the Allia Moveo,1 an image guiding solution designed to enhance mobility and ...

Time December 02, 2025
arrow
News | Archive Cloud Storage

Nov. 30, 2025 — Gradient Health, Inc. has released Atlas 2, a major upgrade to its self-service medical imaging data ...

Time December 01, 2025
arrow
News | Artificial Intelligence

Nov. 24, 2025 — Siemens Healthineers is launching artificial intelligence-enabled services to help healthcare providers ...

Time November 24, 2025
arrow
News | Artificial Intelligence

Nov. 20, 2025 — Aidoc has announced a collaboration with AdventHealth to launch one of the largest imaging AI ...

Time November 21, 2025
arrow
News | Radiology Business

Nov. 13, 2025 — Covera Health recently announced that Advanced Radiology Services (ARS) has joined its national Quality ...

Time November 17, 2025
arrow
News | Radiology Business

Nov. 12, 2025 — Siemens has announced plans to deconsolidate its remaining stake in Siemens Healthineers (currently ...

Time November 13, 2025
arrow
News | Orthopedic Imaging

Nov.10, 2025 — Medical imaging technology company Adaptix Ltd. has received 510(k) clearance from the U.S. Food and Drug ...

Time November 11, 2025
arrow
News | Magnetic Resonance Imaging (MRI)

Nov. 10, 2025 — There has been substantial progress in the past few years in the field of MRI in general and remote MR ...

Time November 11, 2025
arrow
News | Contrast Media

Nov. 10, 2025 — Scientists at the University of Birmingham have developed a new class of MRI contrast agents – improving ...

Time November 10, 2025
arrow
Subscribe Now