Automated Triage of Thyroid Cancer

73-year-old man with papillary carcinoma of left lobe of thyroid. Screen shot shows example of thyroid nodule annotation (segmentation and TI-RADS annotation) performed on ultrasound image in longitudinal projection with electronic Physician Annotation Device software (Stanford Medicine Radiology). Radiologists performed nodule segmentation by selecting points (red) on nodule outline (green), while controlling smoothing of outline polygon by means of spline interpolation.


January 30, 2020 — According to an article published ahead-of-print in the April issue of the American Journal of Roentgenology (AJR), a Stanford University team has developed a quantitative framework able to sonographically differentiate between benign and malignant thyroid nodules at a level comparable to that of expert radiologists, which may prove useful for establishing a fully automated system of thyroid nodule triage.

Alfiia Galimzianova et al. retrospectively collected ultrasound images of 92 biopsy-confirmed nodules, which were annotated by two expert radiologists using the American College of Radiology’s Thyroid Imaging Reporting and Data System (TI-RADS).

In the researchers’ framework, nodule features of echogenicity, texture, edge sharpness, and margin curvature properties were analyzed in a regularized logistic regression model to predict nodule malignancy. Authenticating their method with leave-one-out cross-validation, the Stanford team used ROC AUC, sensitivity, and specificity to compare the framework’s results with those obtained by six expert annotation-based classifiers.

The AUC of the proposed framework measured 0.828 (95% CI, 0.715–0.942) — "greater than or comparable,” Galimzianova noted, “to that of the expert classifiers”—whose AUC values ranged from 0.299 to 0.829 (p = 0.99).

Additionally, in a curative strategy at sensitivity of 1, use of the framework could have avoided biopsy in 20 of 46 benign nodules — statistically significantly higher than three expert classifiers. In a conservative strategy at specificity of 1, the framework could have helped to identify 10 of 46 malignancies — statistically significantly higher than five expert classifiers.  

“Our results confirm the ultimate feasibility of computer-aided diagnostic systems for thyroid cancer risk estimation,” concluded Galimzianova. “Such systems could provide second-opinion malignancy risk estimation to clinicians and ultimately help decrease the number of unnecessary biopsies and surgical procedures.”

For more information: www.arrs.org


Related Content

News | Magnetic Resonance Imaging (MRI)

Jan. 27, 2026 — Hyperfine has announced results from the largest data set to date evaluating stroke detection with its ...

Time January 28, 2026
arrow
News | Radiology Education

Jan. 22, 2026—The American Roentgen Ray Society (ARRS) will host a live virtual symposium, "Medical Imaging for ...

Time January 28, 2026
arrow
News | Point-of-Care Ultrasound (POCUS)

Jan. 27, 2026 — Siemens Healthineers and World Athletics have joined forces to inform medical teams how point-of-care ...

Time January 27, 2026
arrow
News | PET Imaging

Jan. 26, 2026 — Nuclidium, a clinical-stage radiopharmaceutical company developing a proprietary copper-based ...

Time January 27, 2026
arrow
News | Radiology Imaging

Jan. 26, 2026 — Researchers at the University of Arizona were awarded up to $1.8 million by the Advanced Research ...

Time January 26, 2026
arrow
News | Computed Tomography (CT)

Jan. 21, 2026 — Aidoc recently announced that the U.S. Food and Drug Administration (FDA) cleared the industry's first ...

Time January 23, 2026
arrow
News | Point-of-Care Ultrasound (POCUS)

Jan. 22, 2026 — Qure.ai has received a grant from the Gates Foundation to develop a large open-source multi-modal ...

Time January 23, 2026
arrow
News | PACS

Jan. 21, 2026 — Fujifilm Healthcare Americas Corp. and Voicebrook, Inc. have announced a strategic partnership to ...

Time January 22, 2026
arrow
News | Radiology Education

Jan. 20, 2026 — The American Society of Radiologic Technicians (ASRT) Foundation has named ASRT member Danielle McDonagh ...

Time January 20, 2026
arrow
News | Magnetic Resonance Imaging (MRI)

Jan. 20, 2026 — Hyperfine, the developer of the first FDA-cleared AI-powered portable MRI system for the brain — the ...

Time January 20, 2026
arrow
Subscribe Now