Automated Triage of Thyroid Cancer

73-year-old man with papillary carcinoma of left lobe of thyroid. Screen shot shows example of thyroid nodule annotation (segmentation and TI-RADS annotation) performed on ultrasound image in longitudinal projection with electronic Physician Annotation Device software (Stanford Medicine Radiology). Radiologists performed nodule segmentation by selecting points (red) on nodule outline (green), while controlling smoothing of outline polygon by means of spline interpolation.


January 30, 2020 — According to an article published ahead-of-print in the April issue of the American Journal of Roentgenology (AJR), a Stanford University team has developed a quantitative framework able to sonographically differentiate between benign and malignant thyroid nodules at a level comparable to that of expert radiologists, which may prove useful for establishing a fully automated system of thyroid nodule triage.

Alfiia Galimzianova et al. retrospectively collected ultrasound images of 92 biopsy-confirmed nodules, which were annotated by two expert radiologists using the American College of Radiology’s Thyroid Imaging Reporting and Data System (TI-RADS).

In the researchers’ framework, nodule features of echogenicity, texture, edge sharpness, and margin curvature properties were analyzed in a regularized logistic regression model to predict nodule malignancy. Authenticating their method with leave-one-out cross-validation, the Stanford team used ROC AUC, sensitivity, and specificity to compare the framework’s results with those obtained by six expert annotation-based classifiers.

The AUC of the proposed framework measured 0.828 (95% CI, 0.715–0.942) — "greater than or comparable,” Galimzianova noted, “to that of the expert classifiers”—whose AUC values ranged from 0.299 to 0.829 (p = 0.99).

Additionally, in a curative strategy at sensitivity of 1, use of the framework could have avoided biopsy in 20 of 46 benign nodules — statistically significantly higher than three expert classifiers. In a conservative strategy at specificity of 1, the framework could have helped to identify 10 of 46 malignancies — statistically significantly higher than five expert classifiers.  

“Our results confirm the ultimate feasibility of computer-aided diagnostic systems for thyroid cancer risk estimation,” concluded Galimzianova. “Such systems could provide second-opinion malignancy risk estimation to clinicians and ultimately help decrease the number of unnecessary biopsies and surgical procedures.”

For more information: www.arrs.org


Related Content

News | Artificial Intelligence

Nov. 24, 2025 — Siemens Healthineers is launching artificial intelligence-enabled services to help healthcare providers ...

Time November 24, 2025
arrow
News | Artificial Intelligence

Nov. 20, 2025 — Aidoc has announced a collaboration with AdventHealth to launch one of the largest imaging AI ...

Time November 21, 2025
arrow
News | Radiology Business

Nov. 13, 2025 — Covera Health recently announced that Advanced Radiology Services (ARS) has joined its national Quality ...

Time November 17, 2025
arrow
News | Interventional Radiology

Nov. 12, 2025 — On Nov. 11, Huntsman Cancer Institute at the University of Utah (the U) opened its first specialized ...

Time November 13, 2025
arrow
News | Radiology Business

Nov. 12, 2025 — Siemens has announced plans to deconsolidate its remaining stake in Siemens Healthineers (currently ...

Time November 13, 2025
arrow
News | Radiopharmaceuticals and Tracers

Nov. 11, 2025 — The Society of Nuclear Medicine and Molecular Imaging (SNMMI) has released a position paper outlining ...

Time November 12, 2025
arrow
News | Orthopedic Imaging

Nov.10, 2025 — Medical imaging technology company Adaptix Ltd. has received 510(k) clearance from the U.S. Food and Drug ...

Time November 11, 2025
arrow
News | Magnetic Resonance Imaging (MRI)

Nov. 10, 2025 — There has been substantial progress in the past few years in the field of MRI in general and remote MR ...

Time November 11, 2025
arrow
News | Prostate Cancer

Nov. 10, 2025 — Researchers at Wayne State University and the Barbara Ann Karmanos Cancer Institute have developed a ...

Time November 11, 2025
arrow
News | Contrast Media

Nov. 10, 2025 — Scientists at the University of Birmingham have developed a new class of MRI contrast agents – improving ...

Time November 10, 2025
arrow
Subscribe Now