News | Neuro Imaging | July 20, 2016

Machine learning applied to MRI scan successfully differentiates between forms of dementia

MRI, arterial spin labeling, ASL, Alzheimer's disease, Alle Meije Wink

July 12, 2016 — Researchers in the Netherlands have coupled machine learning methods with a special magnetic resonance imaging (MRI) technique that measures the perfusion of blood throughout the brain to detect early forms of dementia. The study was published online in the journal Radiology.

“MRI can help with the diagnosis of Alzheimer’s disease,” said principal investigator Alle Meije Wink, Ph.D., from the VU University Medical Centre in Amsterdam. “However, the early diagnosis of Alzheimer’s disease is problematic.”

Scientists have long known that Alzheimer’s disease is a gradual process and that the brain undergoes functional changes before the structural changes associated with the disease show up on imaging results. Physicians have no definitive way of identifying who has early dementia or which cases of mild cognitive impairment will progress to Alzheimer’s disease.

“With standard diagnostic MRI, we can see advanced Alzheimer’s disease, such as atrophy of the hippocampus,” Meije Wink said. “But at that point, the brain tissue is gone and there’s no way to restore it. It would be helpful to detect and diagnose the disease before it’s too late.”

For the new study, the researchers applied machine learning methods to a special type of MRI called arterial spin labeling (ASL) imaging. ASL MRI is used to create images called perfusion maps, which show how much blood is delivered to various regions of the brain. Machine learning is a type of artificial intelligence that allows computer programs to learn when exposed to new data without being programmed.

The automated machine learning program is taught to recognize patterns in these maps to distinguish among patients with varying levels of cognitive impairment and predict the stage of Alzheimer’s disease in new (unseen) cases.

The study included 260 of 311 participants from the Alzheimer Center of the VU University Medical Center dementia cohort who underwent ASL MRI between October 2010 and November 2012.

The study group included 100 patients diagnosed with probable Alzheimer’s disease, 60 patients with mild cognitive impairment (MCI) and 100 patients with subjective cognitive decline (SCD) and 26 healthy controls.

SCD and MCI are considered to be early stages of the dementia process and are diagnosed based on the severity of cognitive symptoms, including memory loss and thought- and decision-making problems.

The automated system was able to distinguish effectively among participants with Alzheimer’s disease, MCI and SCD. Using classifiers based on the automated machine learning training, the researchers were then able to predict the Alzheimer’s diagnosis or progression of single patients with a high degree of accuracy, ranging from 82 percent to 90 percent.

“ASL is a promising alternative functional biomarker for the early diagnosis of Alzheimer’s disease,” Meije Wink said.

He added that the application of automated machine learning methods would be useful as a potential screening tool.

“ASL MRI can identify brain changes that appear early in disease process, when there’s a window of opportunity for intervention,” Meije Wink said. “If the disease process from SCD to MCI to Alzheimer’s disease could be intercepted or slowed, this technique could play a role in screening.”

For more information: pubs.rsna.org/journal/radiology


Related Content

News | Radiology Business

The American Society of Radiologic Technologists (ASRT) will host a free Virtual Career Fair on March 17, from 4-7 p.m ...

Time February 20, 2026
arrow
News | Magnetic Resonance Imaging (MRI)

Feb. 19, 2026 — GE HealthCare recently announced 510(k) clearance of three new magnetic resonance (MR) innovations with ...

Time February 20, 2026
arrow
Feature | Artificial Intelligence

For the past decade, artificial intelligence's (AI) potential in healthcare has been synonymous with speed. In medical ...

Time February 16, 2026
arrow
News | Radiology Imaging

Feb. 12, 2026 — Siemens Healthineers and Mayo Clinic are expanding their strategic collaboration to enhance patient care ...

Time February 13, 2026
arrow
News | ARRS

Feb. 11, 2026 —The American Roentgen Ray Society (ARRS) has announced the following radiologists, as well as their ...

Time February 13, 2026
arrow
News | Radiology Business

Feb. 3, 2026 — RadNet, Inc., a provider of high-quality, cost-effective outpatient diagnostic imaging services and ...

Time February 12, 2026
arrow
News | Magnetic Resonance Imaging (MRI)

Feb. 6, 2026 — A state-of-the-art intraoperative MRI (iMRI) has arrived at the University of Chicago Medicine, one of ...

Time February 06, 2026
arrow
News | Computed Tomography (CT)

Feb. 4, 2026 — A new review published in the American Journal of Roentgenology (AJR) finds that advances in CT ...

Time February 04, 2026
arrow
News | Radiology Imaging

Feb. 4, 2026 — The Royal College of Radiologists (RCR) has issued its initial reaction to the British government's ...

Time February 04, 2026
arrow
News | Magnetic Resonance Imaging (MRI)

Jan. 27, 2026 — Hyperfine has announced results from the largest data set to date evaluating stroke detection with its ...

Time January 28, 2026
arrow
Subscribe Now