News | Radiology Imaging | February 05, 2018

Washington University in St. Louis Launches Doctorate in Imaging Sciences

Program will be the nation’s second doctoral program in imaging sciences when it launches for the 2018-19 academic year

Mark Anastasio, an internationally recognized expert on tomographic image reconstruction, imaging physics and development of novel computed biomedical imaging systems, is the director of a new medical imaging Ph.D. program at Washington University in St. Louis.

February 5, 2018 — The field of imaging science — marked by rapidly changing and improving technology — plays a critical role in applications ranging from cancer diagnosis to virtual reality. With the aim of training the next leaders in imaging, the School of Engineering & Applied Science is collaborating with other Washington University in St. Louis schools to offer an interdisciplinary doctoral program in imaging sciences, beginning in the 2018-19 academic year.

Designed to prepare students for careers in academic research or in industry, the interdisciplinary doctoral program will incorporate the latest imaging technologies, including biomedical, satellite, seismic, sonic and light detection and ranging (LiDAR).

More than 35 faculty experts in engineering will train students in quantitative and computational principles of image formation, analysis, understanding and quality assessment. Such faculty members represent a broad cross-section of engineering, including those from the graduate program in biomedical engineering, and from electrical and systems engineering and computer science. Others involved in the program include: Arts & Sciences faculty in physics, applied math, biology and chemistry; and School of Medicine faculty in radiology, radiation oncology, and cell biology and physiology.

The doctoral program in imaging sciences — one of only two in the country – is part of a $25 million initiative recently launched by the School of Engineering & Applied Science and the School of Medicine, one of the highest ranked in the country. The initiative supports university researchers developing innovative imaging technologies aimed at transforming clinical research and the practice of medicine around the world.

Washington University has been a leader in the technology and advancement of imaging science for more than 125 years. In the 1920s, university researchers were the first to use X-rays to view the gallbladder. In the 1970s, research by Michel Ter-Pogossian at the Mallinckrodt Institute of Radiology led to the development of the positron emission tomography (PET) scanner.

The new program’s director is Mark Anastasio, an internationally recognized expert on tomographic image reconstruction, imaging physics and development of novel computed biomedical imaging systems.

“Imaging science is an incredible strength at WashU,” said Anastasio, who also is a professor of biomedical engineering. “The environment here is fertile for setting up this kind of Ph.D. program because of the university’s long history of research and advances in imaging science. It’s a natural place to set up a Ph.D. program, and it’s natural for us to take leadership on this.”

Imaging science is much like the field of computer science 60 years ago before it became its own academic discipline, Anastasio said.

“Imaging technology is booming, and now we are in an artificial intelligence revolution where machine learning is taking over and everything is becoming ‘smart,’” Anastasio said. “Artificial intelligence revolution is definitely impacting the medical imaging field. We hope that this program will embrace this new AI technology and will change the way images are used and formed.”

Candidates for the doctoral program will have an undergraduate or master’s degree in engineering, mathematics, computer science, physics or another quantitative discipline. Students will be required to complete 72 credit hours, which includes a minimum of 37 hours of course credits and a minimum of 24 hours of doctoral dissertation research. Students must also complete at least one research rotation and become integrated into a research group in an Engineering department, among other requirements.

In addition, students may obtain a certificate in medical physics with additional coursework.

For more information:


Related Content

Videos | Radiomics | August 09, 2018
A discussion with Martin Vallieres, Ph.D., post-doctoral fellow at McGill University, Montreal, Canada.
Gary D. Luker Named Editor of Radiology: Imaging Cancer

Image courtesy of University of Michigan Medical School

News | Oncology Diagnostics | August 06, 2018
The Board of Directors of the Radiological Society of North America (RSNA) announced that Gary D. Luker, M.D., will...
Videos | Digital Radiography (DR) | August 03, 2018
Sheila Sferrella, president of Regents Health Resources and Bill Finerfrock, president of Capitol Associates, discuss
Videos | AAPM | August 03, 2018
Ehsan Samei, Ph.D., DABR, FAAPM, FSPIE, director of the Duke Un...
New Regulatory Approvals Driving Research and Development Dollars in Medical Imaging Artificial Intelligence
News | Artificial Intelligence | August 01, 2018
Medical imaging has become the bellwether for the application of artificial intelligence (AI) technologies, especially...
Videos | Artificial Intelligence | August 01, 2018
A discussion with Steve Jiang, Ph.D., director of the medical...
Sectra radiation dose monitoring software can help manage radiation dose from multiple medical imaging modalities.
News | Radiation Dose Management | July 25, 2018
July 25, 2018 – Sectra will install its cloud-based,...
Magseed magnetic marker
Technology | Tumor Tracking Systems | July 20, 2018
Endomag, the surgical guidance company, received 510(k) clearance from the U.S.
Ensuring that the FMDS for MRI safety is mounted outside Zone IV provides maximum early warning.

Ensuring that the FMDS for MRI safety is mounted outside Zone IV provides maximum early warning. (Images courtesy of Metrasens)

Feature | Magnetic Resonance Imaging (MRI) | July 03, 2018 | By Tobias Gilk
Nearly every job in the country is subject to certain health and safety regulations. Construction workers must wear...
Carestream DRX-Revolution Nano Mobile X-ray System

The Carestream DRX-Revolution Nano Mobile X-ray System.

Feature | Digital Radiography (DR) | July 03, 2018 | By Melinda Taschetta-Millane
The mobile digital radiography (DR) segment is the largest segment by product type in the global digital mobile DR...
Overlay Init