News | Radiology Imaging | February 05, 2018

Washington University in St. Louis Launches Doctorate in Imaging Sciences

Program will be the nation’s second doctoral program in imaging sciences when it launches for the 2018-19 academic year

Mark Anastasio, an internationally recognized expert on tomographic image reconstruction, imaging physics and development of novel computed biomedical imaging systems, is the director of a new medical imaging Ph.D. program at Washington University in St. Louis.

February 5, 2018 — The field of imaging science — marked by rapidly changing and improving technology — plays a critical role in applications ranging from cancer diagnosis to virtual reality. With the aim of training the next leaders in imaging, the School of Engineering & Applied Science is collaborating with other Washington University in St. Louis schools to offer an interdisciplinary doctoral program in imaging sciences, beginning in the 2018-19 academic year.

Designed to prepare students for careers in academic research or in industry, the interdisciplinary doctoral program will incorporate the latest imaging technologies, including biomedical, satellite, seismic, sonic and light detection and ranging (LiDAR).

More than 35 faculty experts in engineering will train students in quantitative and computational principles of image formation, analysis, understanding and quality assessment. Such faculty members represent a broad cross-section of engineering, including those from the graduate program in biomedical engineering, and from electrical and systems engineering and computer science. Others involved in the program include: Arts & Sciences faculty in physics, applied math, biology and chemistry; and School of Medicine faculty in radiology, radiation oncology, and cell biology and physiology.

The doctoral program in imaging sciences — one of only two in the country – is part of a $25 million initiative recently launched by the School of Engineering & Applied Science and the School of Medicine, one of the highest ranked in the country. The initiative supports university researchers developing innovative imaging technologies aimed at transforming clinical research and the practice of medicine around the world.

Washington University has been a leader in the technology and advancement of imaging science for more than 125 years. In the 1920s, university researchers were the first to use X-rays to view the gallbladder. In the 1970s, research by Michel Ter-Pogossian at the Mallinckrodt Institute of Radiology led to the development of the positron emission tomography (PET) scanner.

The new program’s director is Mark Anastasio, an internationally recognized expert on tomographic image reconstruction, imaging physics and development of novel computed biomedical imaging systems.

“Imaging science is an incredible strength at WashU,” said Anastasio, who also is a professor of biomedical engineering. “The environment here is fertile for setting up this kind of Ph.D. program because of the university’s long history of research and advances in imaging science. It’s a natural place to set up a Ph.D. program, and it’s natural for us to take leadership on this.”

Imaging science is much like the field of computer science 60 years ago before it became its own academic discipline, Anastasio said.

“Imaging technology is booming, and now we are in an artificial intelligence revolution where machine learning is taking over and everything is becoming ‘smart,’” Anastasio said. “Artificial intelligence revolution is definitely impacting the medical imaging field. We hope that this program will embrace this new AI technology and will change the way images are used and formed.”

Candidates for the doctoral program will have an undergraduate or master’s degree in engineering, mathematics, computer science, physics or another quantitative discipline. Students will be required to complete 72 credit hours, which includes a minimum of 37 hours of course credits and a minimum of 24 hours of doctoral dissertation research. Students must also complete at least one research rotation and become integrated into a research group in an Engineering department, among other requirements.

In addition, students may obtain a certificate in medical physics with additional coursework.

For more information: engineering.wustl.edu/imagingscience

 

Related Content

Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Charles Ananian, M.D.

Charles Ananian, M.D.

Sponsored Content | Case Study | Digital Radiography (DR) | November 07, 2018
Whether it’s a premature baby or a critically ill child, treating little patients is a huge responsibility.
Results of the vertebrae-based analysis (383 vertebrae in 34 patients) for detection of BME.

Results of the vertebrae-based analysis (383 vertebrae in 34 patients) for detection of BME.

Sponsored Content | Case Study | Computed Tomography (CT) | November 06, 2018
The following is a summary of a study published in the
An example of the newest generation of smart cardiac CT software that automatically identifies the anatomy, autotraces the centerlines on the entire coronary tree and labels each vessel segment.

An example of the newest generation of smart cardiac CT software that automatically identifies the anatomy, autotraces the centerlines on the entire coronary tree and labels each vessel segment. This greatly speeds CT workflows, saving time for techs, radiologists and cardiologists.

Feature | Radiology Imaging | October 04, 2018 | By Dave Fornell
Here is a checklist of dose-sparing practices for cardiac computed tomography (CT) imaging used in the cath lab.
Philips Launches Ingenia Ambition X 1.5T MR
News | Magnetic Resonance Imaging (MRI) | September 14, 2018
September 14, 2018 — Philips announced the launch of the Ingenia Ambition X 1.5T...
Videos | Radiation Therapy | September 07, 2018
A discussion with Ehsan Samei, Ph.D., DABR, FAAPM, FSPIE, director of the Duke University Clinical Imaging Physics Gr
Videos | Radiomics | August 09, 2018
A discussion with Martin Vallieres, Ph.D., post-doctoral fellow at McGill University, Montreal, Canada.
Gary D. Luker Named Editor of Radiology: Imaging Cancer

Image courtesy of University of Michigan Medical School

News | Oncology Diagnostics | August 06, 2018
The Board of Directors of the Radiological Society of North America (RSNA) announced that Gary D. Luker, M.D., will...
Videos | Digital Radiography (DR) | August 03, 2018
Sheila Sferrella, president of Regents Health Resources and Bill Finerfrock, president of Capitol Associates, discuss
Videos | AAPM | August 03, 2018
Ehsan Samei, Ph.D., DABR, FAAPM, FSPIE, director of the Duke Un...