News | April 26, 2012

Varian, Siemens Announce Global Collaboration

Varian, Siemens Announce Global Collaboration

Siemens' Somatom Definition Flash CT system

April 25, 2012 – Varian Medical Systems and Siemens Healthcare today announced the signing of a strategic global partnership to provide advanced diagnostic and therapeutic solutions and services for treating cancer with image-guided radiotherapy and radiosurgery. The collaboration covers the mutual marketing and representation of products for imaging and treatment in the global radiation oncology business. This collaboration further comprises the development of software interfaces between Siemens and Varian treatment systems. The two companies will also investigate opportunities for joint development of new products for image-guided radiotherapy and radiosurgery.

Under the agreement that was signed this week, Varian will represent Siemens diagnostic imaging products such as computed tomography (CT), positron emission tomography (PET)/CT or magnetic resonance imaging (MRI) to radiation oncology clinics around the world beginning immediately in most international markets and expanding to North America later this year.  Siemens Healthcare will similarly represent Varian equipment and software for radiotherapy and radiosurgery within its offerings to its healthcare customers. This will enable the companies to offer comprehensive solutions to support the entire clinical workflow from imaging to treatment. Siemens will continue to service and support its global installed base of approximately 2,000 medical linear accelerators. The agreement will give Siemens customers more choices for therapy equipment, including smooth transition and interface to Varian equipment, as aging accelerators are due for replacement.

Furthermore, Varian and Siemens will develop interfaces that will enable connecting Varian’s Aria oncology information system software with Siemens accelerators and imaging systems to give clinics more options for improving workflow and streamlining their operations. The collaboration enables Varian and Siemens to co-develop and offer cancer treatment centers new imaging and treatment solutions utilizing the strengths and technology of both companies.

“This is an exciting development that will enable Varian to enhance and expand its clinical offerings for the benefit of cancer patients around the globe,” said Tim Guertin, president and CEO of Varian Medical Systems. “By developing strong software connectivity and new architecture linking Siemens and Varian systems, together we can give clinics important new options for imaging and treating patients. Another key objective of this partnership is to accelerate innovation and provide more efficient and effective solutions, particularly in emerging markets.”

“With this step under Siemens’ Healthcare Agenda 2013, we aim to strengthen our position as imaging partner of choice in radiation oncology,” said Walter Märzendorfer, CEO of Siemens Radiation Oncology and Computed Tomography. “Through this collaboration, Siemens will continue to serve the global radiation oncology business and help improve the treatment of cancer patients around the globe with high-quality imaging and treatment solutions that utilize our core competency and engineering excellence in imaging.”

For more information: www.varian.com, www.siemens.com/healthcare

Related Content

Elekta Harmony linear accelerator cleared by U.S. Food and Drug Administration
News | Linear Accelerators | June 18, 2021
June 18, 2021 — Elekta announced that its Elekta Harmony...
A novel positron emission tomography (PET) radiotracer has been shown to effectively measure increases in brain tau—a distinguishing characteristic of Alzheimer’s disease—before any symptoms of the disease are observed.

Figure 1. Tau accumulation over one year measured in composite A) mesial temporal ROI; and B) temporoparietal ROI in cognitively unimpaired participants (blue) and cognitively impaired participants (red). The CI group included participants with clinical mild cognitive impairment and dementia. Higher rates of tau accumulation were observed in participants on the AD continuum (CU Aβ+ve and CI Aβ+ve). Participants with the highest baseline tau and rates of tau accumulation were younger and more likely to be CI Aβ+ve. Image courtesy of SNMMI

News | PET Imaging | June 16, 2021
June 16, 2021 — A novel positron emission tomography (PET
SNMMI's Image of the Year is a detailed depiction of areas of cognitive impairment, neurological symptoms and comparison of impairment over a six-month time frame

Figure 1. A: COVID-19-related spatial covariance pattern of cerebral glucose metabolism overlaid onto an MRI template. Voxels with negative region weights are color-coded in cool colors, and regions with positive region weights in hot colors. B: Association between the expression of COVID-19-related covariance pattern and the Montreal Cognitive Assessment (MoCA) score adjusted for years of education. Each dot represents individual patient. C: Results of a statistical parametric mapping analysis. Upper row illustrates regions that show significant increases of normalized FDG uptake in COVID-19 patients at 6-months follow-up compared to the subacute stage (paired t test, p < 0.01, false discovery rate-corrected). Bottom row depicts regions that still show significant decreases of normalized FDG uptake in COVID-19 patients at 6-months follow-up compared to the age-matched control cohort at an exploratory statistical threshold (two-sample t test, p < 0.005). Image Credit: G Blazhenets et al., Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg

News | PET Imaging | June 16, 2021
June 16, 2021 — The effects of COVID-19 on the b
The impact of deploying artificial intelligence (AI) for radiation cancer therapy in a real-world clinical setting has been tested by Princess Margaret researchers in a unique study involving physicians and their patients.

Getty Images

News | Artificial Intelligence | June 15, 2021
June 15, 2021 — The impact of deploying ...
A cardiac MRI of athletes who had COVID-19 is seven times more effective in detecting inflammation of the heart than symptom-based testing, according to a study led by researchers at The Ohio State University Wexner Medical Center and College of Medicine with 12 other Big Ten programs.

Cardiac Magnetic Resonance Imaging in Athletes With Clinical and Subclinical Myocarditis A-D, Athlete A with subclinical possible myocarditis was asymptomatic with normal electrocardiogram (ECG), echocardiogram, and high-sensitivity troponin findings. A, T2 mapping showing elevated T2 in basal-mid inferolateral wall in short axis view. B, late gadolinium enhancement (LGE) in the basal inferolateral wall in short axis view. C, Postcontrast steady state-free precession (SSFP) images showing contrast uptake in the basal-mid inferolateral wall in short axis view. D, LGE in the inferolateral wall in 3-chamber view. E-H, Athlete B with subclinical probable myocarditis was asymptomatic with normal ECG, normal echocardiogram, and elevated high-sensitivity troponin findings. E, T2 mapping showing elevated T2 in the anteroseptal wall in short axis view. F, LGE in the anteroseptal wall in 3-chamber view. G, T2 mapping showing elevated T2 in the anteroseptal wall in 3-chamber view. F, Postcontrast SSFP image showing pericardial effusion in short axis view. I-K, Athlete C with clinical myocarditis and chest pain, dyspnea, abnormal ECG, normal echocardiogram, and normal troponin findings. I, T2 mapping showing elevated T2 in the lateral wall short axis view. J, Postcontrast SSFP images showing contrast uptake in midlateral wall in short axis view. K, LGE in the epicardial midlateral wall in short axis view. L-N, Athlete D with clinical myocarditis, chest pain, abnormal ECG, echocardiogram, and troponin findings. L, T1 mapping showing elevated native T1 in midlateral wall in short axis view. M, T2 mapping showing elevated T2 in the midlateral wall in short axis view. N, LGE in the epicardial midlateral wall in short axis view. IR indicates inferior right view; IRP, inferior, right, posterior view; PLI, posterior, left, inferior view; SL, superior left view; SLA, superior, left, anterior view. Image courtesy of JAMA Cardiol. Published online May 27, 2021. doi:10.1001/jamacardio.2021.2065

News | Cardiac Imaging | June 15, 2021
June 15, 2021 — A...
Rensselaer algorithm can identify risk of cardiovascular disease using lung cancer scan #CT
News | Computed Tomography (CT) | June 14, 2021
June 14, 2021 — Heart disease and cancer are the ...
A new imaging technique has the potential to detect neurological disorders — such as Alzheimer's disease — at their earliest stages, enabling physicians to diagnose and treat patients more quickly. Termed super-resolution, the imaging methodology combines position emission tomography (PET) with an external motion tracking device to create highly detailed images of the brain.

Result of the Hoffman brain phantom study. Top row: same PET slice reconstructed with A) 2mm static OSEM, B) 1mm static OSEM, C) proposed SR method and D) corresponding CT slice (note that the CT image can be treated as a high-resolution reference). Middle row: zoom on region of interest for corresponding images. Bottom row: Line profiles for corresponding data. Image created by Y Chemli, et al., Gordon Center for Medical Imaging: Department of Radiology Massachusetts General Hospital, Harvard Medical School, Boston, MA.

News | PET Imaging | June 14, 2021
June 14, 2021 — A new imaging technique has the potential to detect neurological disorders — such as...
Positron emission tomography (PET) using a 68Ga-labeled fibroblast activation protein inhibitor (FAPI) can noninvasively identify and monitor pulmonary fibrosis, according to research presented at the Society of Nuclear Medicine and Molecular Imaging 2021 Annual Meeting.

A) Axial CT images through the mouse lungs at 7 and 14 days after intratracheal administration of bleomycin or saline (as a control), demonstrating increased lung fibrosis in the bleomycin group (white arrows). (B) CT attenuation histograms in Hounsfield units (HU) after lung segmentation demonstrate increased attenuation in the lungs in the bleomycin group than the control group (p <0.05), consistent with increasing fibrosis (n=3). (C) Representative axial PET/CT fusion images at 20 and 60 min demonstrating increased FAPI uptake in the lungs of the bleomycin group (white arrows) with no significant uptake in the control group (yellow arrows). (D) Time-activity curve of lung uptake ROI analysis demonstrating higher FAPI uptake in the lungs of the bleomycin group than the control (p < 0.05), 14 days after bleomycin (n=3). (E) Ex vivo biodistribution data of lung tissue demonstrating higher radiotracer uptake in the lungs of the bleomycin group than the control (n=3). *p<0.05, **p<0.01. Image created by CA Ferreira et al., University of Wisconsin-Madison, Madison, WI.

News | PET-CT | June 14, 2021
June 14, 2021 — Positron emission tomography (PET) using
Prediction performance of DL compared to quantitative measures and Kaplan-Meier curves for quartiles of DL. Image created by Singh et al., Cedars-Sinai Medical Center, Los Angeles, CA.

Prediction performance of DL compared to quantitative measures and Kaplan-Meier curves for quartiles of DL. Image created by Singh et al., Cedars-Sinai Medical Center, Los Angeles, CA.

News | SPECT Imaging | June 14, 2021
June 14, 2021 — An advanced artificial i...
Accuray Incorporated announced the company has received CE Mark certification for its ClearRT helical fan-beam kVCT imaging capability.
News | Radiation Therapy | June 11, 2021
June 11, 2021 — Accuray Incorporated announced the company has received CE Mark certification for its...