News | Artificial Intelligence | June 28, 2019

Using Artificial Intelligence to Deliver Personalized Radiation Therapy

Newly published Cleveland Clinic-led research first to use medical scans to inform dose delivery

Omega Medical Imaging

Image courtesy of Omega Medical Imaging

New Cleveland Clinic-led research shows that artificial intelligence (AI) can use medical scans and health records to personalize the dose of radiation therapy used to treat cancer patients.

Published today in The Lancet Digital Health, the research team developed an AI framework based on patient computerized tomography (CT) scans and electronic health records. This new AI framework is the first to use medical scans to inform radiation dosage, moving the field forward from using generic dose prescriptions to more individualized treatments.

Currently, radiation therapy is delivered uniformly. The dose delivered does not reflect differences in individual tumor characteristics or patient-specific factors that may affect treatment success. The AI framework begins to account for this variability and provides individualized radiation doses that can reduce the treatment failure probability to less than 5 percent.

"While highly effective in many clinical settings, radiotherapy can greatly benefit from dose optimization capabilities," says lead author Mohamed Abazeed, M.D., Ph.D., a radiation oncologist at Cleveland Clinic's Taussig Cancer Institute and a researcher at the Lerner Research Institute. "This framework will help physicians develop data-driven, personalized dosage schedules that can maximize the likelihood of treatment success and mitigate radiation side effects for patients."

The framework was built using CT scans and the electronic health records of 944 lung cancer patients treated with high-dose radiation. Pre-treatment scans were input into a deep-learning model, which analyzed the scans to create an image signature that predicts treatment outcomes. Using sophisticated mathematical modeling, this image signature was combined with data from patient health records - which describe clinical risk factors - to generate a personalized radiation dose.

"The development and validation of this image-based, deep-learning framework is exciting because not only is it the first to use medical images to inform radiation dose prescriptions, but it also has the potential to directly impact patient care," said Abazeed. "The framework can ultimately be used to deliver radiation therapy tailored to individual patients in everyday clinical practices."

There are several other factors that set this first-of-its-kind framework apart from other similar clinical machine learning algorithms and approaches. The technology developed by the team uses an artificial neural network that merges classical approaches of machine learning with the power of a modern neural network. The network determines how much prior knowledge to use to guide predictions about treatment failure. The extent that prior knowledge informs the model is tunable by the network. This hybrid approach is ideal for clinical applications since most clinical datasets in individual hospitals are more modest in sample size compared to non-clinical datasets used to make other well-known AI predictions (i.e. online shopping or ride-sharing).

Additionally, this framework was built using one of the largest datasets for patients receiving lung radiotherapy, rendering greater accuracy and limiting false findings. Lastly, each clinical center can utilize their own CT datasets to customize the framework and tailor it to their specific patient population.

"Machine learning tools, including deep learning, are poised to play an important role in healthcare," said Abazeed. "This image-based information platform can provide the ability to individualize multiple cancer therapies but more immediately is a leap forward in radiation precision medicine."

For more information: clevelandclinic.org

Related Content

Vacancy rates for radiation therapists rose substantially since 2018, according to a survey performed this year by the American Society of Radiologic Technologists. Researchers noted, however, the survey data was collected before the COVID-19 pandemic began affecting the surveyed clinical settings.

Getty Images

News | Radiation Therapy | June 05, 2020
June 5, 2020 — Vacancy rates for radiation therapists rose substantially since 2018, according to a survey performed
Early diagnosis of cancer is one of the highest-priority problem for the healthcare system, because it is critical for overall treatment success and saving patients' lives. Diffusion-weighted magnetic resonance imaging (DWI) may be used to detect a malignancy in various tissues and organs. It has the advantage of providing insight into the diffusion of water molecules in body tissues without exposing patients to radiation.

DWI of the phantom with polyvinylpyrrolidone (PVP) solutions (b value 500 s/mm2). Image courtesy of Kristina Sergunova et al.

News | Magnetic Resonance Imaging (MRI) | June 02, 2020
June 2, 2020 — Early diagnosis of cancer is one of the highest-priority problem for the healthcare system, because it
Developed by medical AI company Lunit, Software detects breast cancer with 97% accuracy; Study in Lancet Digital Health shows that Lunit INSIGHT MMG-aided radiologists showed an increase in sensitivity

Lunit INSIGHT MMG

News | Artificial Intelligence | June 02, 2020
June 2, 2020 — Lunit announced that its artificia...
The FDA has approved Lilly’s TAUVID (flortaucipir F 18 injection), a radioactive diagnostic agent, for PET imaging of the brain to estimate the density and distribution of aggregated tau neurofibrillary tangles (NFTs) in adult patients with cognitive impairment who are being evaluated for Alzheimer’s disease

Getty Images

News | Contrast Media | June 01, 2020
June 1, 2020 — TAUVID, a radioactive diagnostic agent, has been approved by the FDA for...
MERCK and RefleXion Medical announced a collaboration to evaluate KETRUDA (immunotherapy) with biology-guided radiotherapy - BgRT -  a new radiation machine developed to treat all stages of cancer.

MERCK and RefleXion Medical announced a collaboration to evaluate KETRUDA (immunotherapy) with biology-guided radiotherapy - BgRT -  a new radiation machine developed to treat all stages of cancer.

 

News | Radiation Therapy | June 01, 2020
June 1, 2020 — RefleXion Medical, a therape
AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire)

AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire).

News | Artificial Intelligence | May 29, 2020
May 29, 2020 — GE Healthcare announced U.S.
AI has the potential to help radiologists improve the efficiency and effectiveness of breast cancer imaging

Getty Images

Feature | Breast Imaging | May 28, 2020 | By January Lopez, M.D.
Headlines around the world the past several months declared that...