News | Artificial Intelligence | June 28, 2019

Newly published Cleveland Clinic-led research first to use medical scans to inform dose delivery

Omega Medical Imaging

Image courtesy of Omega Medical Imaging


New Cleveland Clinic-led research shows that artificial intelligence (AI) can use medical scans and health records to personalize the dose of radiation therapy used to treat cancer patients.

Published today in The Lancet Digital Health, the research team developed an AI framework based on patient computerized tomography (CT) scans and electronic health records. This new AI framework is the first to use medical scans to inform radiation dosage, moving the field forward from using generic dose prescriptions to more individualized treatments.

Currently, radiation therapy is delivered uniformly. The dose delivered does not reflect differences in individual tumor characteristics or patient-specific factors that may affect treatment success. The AI framework begins to account for this variability and provides individualized radiation doses that can reduce the treatment failure probability to less than 5 percent.

"While highly effective in many clinical settings, radiotherapy can greatly benefit from dose optimization capabilities," says lead author Mohamed Abazeed, M.D., Ph.D., a radiation oncologist at Cleveland Clinic's Taussig Cancer Institute and a researcher at the Lerner Research Institute. "This framework will help physicians develop data-driven, personalized dosage schedules that can maximize the likelihood of treatment success and mitigate radiation side effects for patients."

The framework was built using CT scans and the electronic health records of 944 lung cancer patients treated with high-dose radiation. Pre-treatment scans were input into a deep-learning model, which analyzed the scans to create an image signature that predicts treatment outcomes. Using sophisticated mathematical modeling, this image signature was combined with data from patient health records - which describe clinical risk factors - to generate a personalized radiation dose.

"The development and validation of this image-based, deep-learning framework is exciting because not only is it the first to use medical images to inform radiation dose prescriptions, but it also has the potential to directly impact patient care," said Abazeed. "The framework can ultimately be used to deliver radiation therapy tailored to individual patients in everyday clinical practices."

There are several other factors that set this first-of-its-kind framework apart from other similar clinical machine learning algorithms and approaches. The technology developed by the team uses an artificial neural network that merges classical approaches of machine learning with the power of a modern neural network. The network determines how much prior knowledge to use to guide predictions about treatment failure. The extent that prior knowledge informs the model is tunable by the network. This hybrid approach is ideal for clinical applications since most clinical datasets in individual hospitals are more modest in sample size compared to non-clinical datasets used to make other well-known AI predictions (i.e. online shopping or ride-sharing).

Additionally, this framework was built using one of the largest datasets for patients receiving lung radiotherapy, rendering greater accuracy and limiting false findings. Lastly, each clinical center can utilize their own CT datasets to customize the framework and tailor it to their specific patient population.

"Machine learning tools, including deep learning, are poised to play an important role in healthcare," said Abazeed. "This image-based information platform can provide the ability to individualize multiple cancer therapies but more immediately is a leap forward in radiation precision medicine."

For more information: clevelandclinic.org


Related Content

News | SIIM

June 20, 2024 — The Society for Imaging Informatics in Medicine (SIIM) is gearing up for its SIIM24 Annual Meeting and ...

Time June 20, 2024
arrow
News | Radiation Therapy

June 19, 2024 — RaySearch Laboratories AB announced a milestone in radiotherapy technology where RaySearch’s RayStation ...

Time June 19, 2024
arrow
News | Artificial Intelligence

June 17, 2024 — Avenda Health, an AI healthcare company creating the future of personalized prostate cancer care ...

Time June 17, 2024
arrow
News | Proton Therapy

June 14, 2024 — Atlantic Health System, an integrated health care system setting standards for quality health care in ...

Time June 14, 2024
arrow
News | PET Imaging

June 14, 2024 — Positron Corporation, a leading molecular imaging medical device company offering PET and PET-CT ...

Time June 14, 2024
arrow
News | FDA

June 10, 2024 — Siemens Healthineers announces the Food and Drug Administration clearance of the Biograph Trinion, a ...

Time June 10, 2024
arrow
News | Breast Imaging

June 7, 2024 — Scholars and studies funded by Susan G. Komen(R), the world’s leading breast cancer organization ...

Time June 07, 2024
arrow
News | Radiopharmaceuticals and Tracers

June 7, 2024 — Shine Technologies, LLC, a pioneer in next-generation fusion-based technology, today announced a new ...

Time June 07, 2024
arrow
News | Digital Radiography (DR)

June 6, 2024 — In a landmark study, the latest in technology innovation by Konica Minolta Healthcare was used to develop ...

Time June 06, 2024
arrow
News | Breast Imaging

June 4, 2024 — Using artificial intelligence (AI), breast radiologists in Denmark have improved breast cancer screening ...

Time June 04, 2024
arrow
Subscribe Now