News | Radiation Dose Management | April 17, 2017

University of California Study Searches for Consistent CT Dose Best Practices

Study across five medical centers stresses importance of sharing dose information across institutions to develop standards

University of California Study Searches for Consistent CT Dose Best Practices

April 17, 2017 — A new study led by UC San Francisco has found that radiation doses can be safely and effectively reduced – and more consistently administered – for common computed tomography (CT) scans by assessing and comparing doses across hospitals, and then sharing best practices for how much radiation to use.

While there has been a steady rise in the use of CT in the United States over the last decade, doses of radiation vary substantially between hospitals, with few concrete standards on best dose levels. As a result, medical experts have difficulty determining the “right” dose of radiation that balances diagnostic accuracy, while minimizing the radiation exposure that increases cancer risk for patients. Without a consistent standard, each institution generally makes independent decisions about what dose to use.   

A new project at the five academic medical centers of the University of California introduced a feedback system for radiologists on their doses and sought to study its effectiveness in reducing excess radiation exposure. The program consisted of auditing radiology professionals at each medical center and providing feedback on how these doses compared to those used at the other medical centers, while systematically sharing best practices. Included in the project were section chiefs of radiology, medical physicists and radiology technicians.

The project resulted in substantially lower radiation doses for chest and abdominal scans, as well as more consistent radiation doses for head scans, according to the study which appears April 10 in JAMA Internal Medicine.

“We estimate that if the improvements we saw were applied to all abdominal CT scans performed in the U.S., this would result in the reduction of approximately 12,000 cancers annually,” said senior author Rebecca Smith-Bindman, M.D., a professor in the UCSF departments of radiology, and of epidemiology and biostatistics, and the Philip R. Lee Institute of Health Policy Studies. Smith-Bindman also directs the Radiology Outcomes Research Laboratory.

“Reducing unnecessary and inconsistent radiation doses is an extremely important process for improving patient safety,” she said. “We found that providing detailed and comparative feedback, and sharing best practices on how each institution was able to optimize their dose, leads to lower and more consistent CT doses. In short, it makes no sense for each institution to have to reinvent the wheel regarding how to optimize doses – this project focuses on helping the leaders at each institution learn from each other.”

For more information: www.jamanetwork.com/journals/jamainternalmedicine

Related Content

SimonMed Deploys ClearRead CT Enterprise Wide
News | Computer-Aided Detection Software | September 17, 2018
September 17, 2018 — National outpatient physician radiology group SimonMed Imaging has selected Riverain Technologie
Siemens Healthineers Announces First U.S. Install of Somatom go.Top CT
News | Computed Tomography (CT) | September 17, 2018
September 17, 2018 — The Ohio State University Wexner Medical Center in Columbus recently became the first healthcare
Sponsored Content | Whitepapers | Radiation Dose Management | September 10, 2018
It’s crucial for medical professionals to understand the radiation risk/ benefit balance of diagnostic imaging system
The CT scanner might not come with protocols that are adequate for each hospital situation, so at Phoenix Children’s Hospital they designed their own protocols, said Dianna Bardo, M.D., director of body MR and co-director of the 3D Innovation Lab at Phoenix Children’s.

The CT scanner might not come with protocols that are adequate for each hospital situation, so at Phoenix Children’s Hospital they designed their own protocols, said Dianna Bardo, M.D., director of body MR and co-director of the 3D Innovation Lab at Phoenix Children’s.

Sponsored Content | Case Study | Radiation Dose Management | September 07, 2018
Radiation dose management is central to child patient safety. Medical imaging plays an increasing role in the accurate...
Carestream Releases Second-Generation Metal Artifact Reduction Software for OnSight 3D Extremity System
Technology | Computed Tomography (CT) | September 06, 2018
Carestream Health has started shipping a new software version for its Carestream OnSight 3D Extremity System that...

Image courtesy of Medic Vision

Feature | Radiation Dose Management | September 06, 2018 | By Mukul Mehra, M.D.
While working with a patient with Crohn’s disease in my gastroenterology practice, I nearly ordered a computed...

Image courtesy of Siemens Healthineers

Feature | CT Angiography (CTA) | September 06, 2018 | Dave Fornell
There have been a few big, recent advancements in cardiac computed tomography angiography (CCTA) imaging technology....
Key Patient Preparations for a CT Scan
News | Computed Tomography (CT) | September 05, 2018
The Center for Diagnostic Imaging (CDI) in Miami recently released a list of important preparations patients should...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...
Check-Cap Announces Interim Results of European Study of C-Scan System Version 3
News | Colonoscopy Systems | September 04, 2018
Check-Cap Ltd. announced the interim results for its post-CE approval study of the C-Scan system Version 3, an...
Overlay Init