News | May 08, 2015

UCLA Neurosurgeons Stepping Inside Patients’ Brains Using 3-D Virtual Reality Gaming Technology

Technology enables surgical theater 3-D surgery navigation

UCLA, Oculus Surgical Theater, virtual reality, brain, navigation, AANS

May 8, 2015 — Neurosurgeons at the University of California-Los Angeles (UCLA) are using Oculus Rift virtual reality headsets used in gaming to be transported inside their patients’ brains. The UCLA Department of Neurosurgery is collaborating with Surgical Theater LLC to integrate the Oculus Rift with Surgical Theater's 3-D surgery navigation device called SNAP.

The navigation virtual reality scene is built based on patients’ specific computed tomography (CT) and magnetic resonance imaging (MRI) scans, providing the potential for the surgeon to enter the virtual brain, examine the brain tumor or aneurysm, and plan the surgical strategy and operative steps. This promises to improve precision and surgical outcomes while decreasing surgical time.

Neil Martin, M.D., chairman of the UCLA Department of Neurosurgery, premiered the Oculus Surgical Theater at the 2015 American Association of Neurological Surgeons (AANS) annual meeting May 2-6 in Washington, D.C. This is the first time Oculus Rift technology is being used in the medical arena—for brain surgery.

Over the last several months, Martin and his team have been employing Oculus Surgical Theater, which combines a 3-D virtual reality surgical navigation with the Oculus Rift headset. The system features accurate stereoscopic 3-D views as well as excellent depth, scale and parallax of the brain. Martin enters and interacts within the anatomy of the brain to see not only the brain tumor or aneurysm, but also every connected vessel and structure.

“Using the Oculus Surgical Theater is an immersive experience; you are standing there and facing the tumor, moving your head so you can see behind, to the left and right, so you can see the vessel that is covering the tumor from a certain angle or direction,” he said. “The virtual experience is similar to touring a house; after a few minutes of ‘being there,’ your memory is equipped so you know exactly where the front door, back door and garage are. It translates to superior situational awareness and navigation capabilities inside the patient’s brain.”

This innovative visual representation of a patient’s brain is potentially key to ensuring a successful surgery before the first incision is even made. By employing this technology, surgeons will be able to examine the best ways to protect and preserve areas that control motor and language function, depending on the location of the tumor or aneurysm. The Oculus Surgical Theater is expected to improve microsurgery, such as when Martin is operating through a microscope and a keyhole, dime-sized incision on structures that are often only just a few millimeters in size.

Research on virtual reality conducted at Stanford University found that the brain absorbed spatial details 33 percent more effectively in immersive VR than from video alone. Much like how a professional athlete practices to increase their performance, the Oculus Surgical Theater gives surgeons the ability to virtually plan a surgery tactic on brain tissue and blood vessels that look just like those inside the brain, all while building a strong foundation of situational awareness and memory for the surgeon.

“Every patient is unique, so being able to virtually see and study the structure of each individual brain tumor, or aneurysm, prior to and during surgery will increase our confidence and precision during the most complex neurosurgical procedures. I believe it will decrease operative time, and improve surgical outcomes for our patients,” Martin said.

The Oculus Surgical Theater is under final testing at UCLA and will be evaluated in surgeries in the coming weeks.

For more information: www.neurosurgery.ucla.edu

Related Content

Sectra Adds DePuy Synthes 3-D Templates to Pre-Operative Orthopedic Solution
News | Orthopedic Imaging | October 17, 2019
International medical imaging information technology (IT) and cybersecurity company Sectra is extending its pre-...
Brainlab Introduces Loop-X Mobile Intraoperative Imaging Robot
News | Mobile C-Arms | September 26, 2019
Digital medical technology company Brainlab unveiled Loop-X, which it calls the first mobile intraoperative imaging...
Virtual Reality 3-D Models Help Yield Better Surgical Outcomes

Joseph Shirk, M.D., of UCLA with the virtual reality headset. Image courtesy of UCLA Jonsson Comprehensive Cancer Center

News | Virtual and Augmented Reality | September 25, 2019
A UCLA-led study has found that using three-dimensional virtual reality (VR) models to prepare for kidney tumor...
3D Systems Earns Additional FDA Clearance for D2P Medical 3-D Printing Software

3D Systems’ D2P FDA-cleared software allows clinicians to 3-D-print diagnostic patient-specific anatomic models. Image courtesy of 3D Systems.

Technology | Medical 3-D Printing | September 12, 2019
3D Systems has received additional U.S. Food and Drug Administration (FDA) 510(k) clearance for its D2P software...
Delaware Imaging Network Now Offers NeuroQuant Brain Imaging MRI Software
News | Neuro Imaging | August 29, 2019
Delaware Imaging Network (DIN), Delaware’s largest network of outpatient medical imaging centers, has added NeuroQuant...
Smoldering Spots in the Brain May Signal Severe MS

NIH researchers found that dark rimmed spots representing ongoing, “smoldering” inflammation, may be a hallmark of more disabling forms of multiple sclerosis. Image courtesy of Reich lab, NIH/NINDS.

News | Neuro Imaging | August 22, 2019
Aided by a high-powered brain scanner and a 3-D printer, National Institutes of Health (NIH) researchers peered inside...
RSNA and ACR to Collaborate on Landmark Medical 3D Printing Registry
News | Medical 3-D Printing | August 08, 2019
The Radiological Society of North America (RSNA) and the American College of Radiology (ACR) will launch a new medical...
Synaptive Medical Launches Modus Plan With Automated Tractography Segmentation
Technology | Neuro Imaging | August 07, 2019
Synaptive Medical announced the U.S. launch and availability of Modus Plan featuring BrightMatter AutoSeg. This release...
TeraRecon Unveils iNtuition AI Data Extractor
News | Advanced Visualization | July 03, 2019
Artificial Intelligence (AI) and advanced visualization company TeraRecon announced its new iNtuition AI Data Extractor...
A 3-D printed model (left) and a model constructed in augmented reality (right), both of a kidney with a tumor. In both models, the kidney is clear; the tumor is visible in purple on the AR model and in white on the 3-D printed model.

A 3-D printed model (left) and a model constructed in augmented reality (right), both of a kidney with a tumor. In both models, the kidney is clear; the tumor is visible in purple on the AR model and in white on the 3-D printed model. Photo courtesy of Nicole Wake, Ph.D.

Feature | Advanced Visualization | July 02, 2019 | By Jeff Zagoudis
Three-dimensional (3-D) printing and...