News | September 25, 2014

Study Questions Accuracy of Lung Cancer Screens in Some Geographic Regions

September 25, 2014 — A new analysis of published studies found that FDG-PET technology is less accurate in diagnosing lung cancer versus benign disease in regions where infections like histoplasmosis or tuberculosis are common. Misdiagnosis of lung lesions suspicious for cancer could lead to unnecessary tests and surgeries for patients, with additional potential complications and mortality.

Histoplasmosis and other fungal diseases are linked to fungi that are often concentrated in bird droppings and are found in soils.

The study by investigators at Vanderbilt University and the Tennessee Valley Healthcare System-Veterans Affairs was led by Vanderbilt first author Stephen Deppen, Ph.D., and principal investigator Eric Grogan, M.D., MPH, and appeared in the Sept. 24 issue of JAMA.

Positron emission tomography (PET) combined with fludeoxyglucose F18 (FDG) is currently recommended for the noninvasive diagnosis of lung nodules suspicious for lung cancer. To estimate FDG-PET diagnostic accuracy, the authors reviewed lung cancer abstracts published in a 14-year period and included 70 studies in the meta-analysis. The studies included 8,511 nodules, 60 percent of which were malignant.

"The accuracy of FDG-PET for diagnosing lung nodules varied widely from study to study," said Deppen, assistant professor in thoracic durgery. "FDG-PET scans had more false positive results and, therefore were less specific in diagnosing lung cancer in regions of the world where infectious lung disease is common in the general population."

The most prevalent fungal lung diseases in the United States are histoplasmosis, coccidioidomycosis and blastomycosis. All three fungi reside in soils. Histoplasmosis and blastomycosis are common across much of the Mississippi, Ohio and Missouri river valleys and through southern Ontario, Canada, and coccidioidomycosis is prevalent in the southwestern United States.

These infections can cause inflamed nodules in the lungs (granulomas), which can be mistaken for cancerous lesions by radiographic imaging.

In previous meta-analyses, FDG-PET was reported to be 90 to 94 percent accurate in the characterization of malignant or benign lung nodules. However, the current analysis found that FDG-PET was less reliable in regions where fungal lung disease is endemic.

"The frequency of benign lesions in these geographic regions could lead to unnecessary biopsies or lung surgeries in patients," said Grogan, staff surgeon at Veterans Hospital, assistant professor of surgery in the Department of Thoracic Surgery and assistant professor of medicine in the Institute for Medicine and Public Health at Vanderbilt. "However, some medical practices achieved greater test accuracy through robust reading methods, even in these regions."

The authors suggest that the use of FDG-PET to diagnose lung cancer be limited to non-endemic regions unless an institution has substantial and proven expertise in FDG-PET interpretation.

For more information: www.mc.vanderbilt.edu

Related Content

RSNA Study Shows Real-Time Indicator Improves Mammographic Compression
News | Mammography | December 12, 2018
Sigmascreening recently announced that more than 100,000 women have had mammography exams with the Sensitive Sigma...
Videos | SPECT-CT | December 12, 2018
This is a walk around of the new Spectrum Dynamics Veriton SPECT-CT nuclear imaging system introduced at the 2018 ...
Coreline Soft Introduces AI Lung Segmentation Solution at RSNA 2018
News | Lung Cancer | December 10, 2018
December 10, 2018 — Korean image software company Coreline Soft Co. Ltd.
Youth Football Changes Nerve Fibers in Brain

Statistically significant clusters (red-colored) showing group differences (Control vs. Football) in white matter strain along the primary (F1) and secondary (F2) fibers. While body of corpus callosum (BBC) showed relative shrinkage in Football group, the other clusters showed relative stretching of fibers. PCR: Posterior Corona Radiata, PLIC: Posterior Limb of Internal Capsule, SCR: Superior Corona Radiata, SLF: Superior Longitudinal Fasciculus, SCC: Splenium of Corpus Callosum. Image courtesy of Kim et al.

News | Neuro Imaging | December 07, 2018
Magnetic resonance imaging (MRI) scans show repetitive blows to the head result in brain changes among youth football...
YITU Releases AI-Based Cancer Screening Solutions at RSNA 2018
News | Artificial Intelligence | December 06, 2018
Chinese artificial intelligence (AI) healthcare company YITU healthcare released two brand-new products, Intelligent...
Spectrum Dynamics Sues GE for Theft, Misappropriation of Trade Secrets and Unfair Competition
News | SPECT Imaging | December 06, 2018
Single-photon emission computed tomography (SPECT) cardiac imaging company Spectrum Dynamics filed a lawsuit Dec. 6,...
Subtle Medical Receives FDA Clearance, CE Mark for SubtlePET
Technology | PET Imaging | December 05, 2018
Subtle Medical announced 510(k) clearance from the U.S. Food and Drug Administration (FDA) to market SubtlePET. Subtle...
Fujifilm Collaborates With Lunit on AI Pilot Project
News | Artificial Intelligence | December 05, 2018
Fujifilm Medical Systems USA Inc. announced a joint collaboration with Korean-based medical artificial intelligence (AI...
Mirada Medical Joins U.K. Consortium Exploring Healthcare AI
News | Artificial Intelligence | December 04, 2018
Mirada Medical, a leading global brand in medical imaging software, will form part of an artificial intelligence (AI)...
Infervision Introduces AI Capabilities for Chest CT Reading
Technology | Computer-Aided Detection Software | November 30, 2018
Big data and artificial intelligence (AI) company Infervision announced the launch of InferRead CT Chest, a new product...